Properties

Degree 2
Conductor $ 3^{2} \cdot 7 \cdot 11^{2} $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 0.618·2-s − 1.61·4-s − 2.23·5-s − 7-s + 2.23·8-s + 1.38·10-s + 4.23·13-s + 0.618·14-s + 1.85·16-s + 2·17-s − 7.47·19-s + 3.61·20-s + 2·23-s − 2.61·26-s + 1.61·28-s + 5·29-s + 1.52·31-s − 5.61·32-s − 1.23·34-s + 2.23·35-s + 7.47·37-s + 4.61·38-s − 5.00·40-s − 6.47·41-s − 0.472·43-s − 1.23·46-s − 0.527·47-s + ⋯
L(s)  = 1  − 0.437·2-s − 0.809·4-s − 0.999·5-s − 0.377·7-s + 0.790·8-s + 0.437·10-s + 1.17·13-s + 0.165·14-s + 0.463·16-s + 0.485·17-s − 1.71·19-s + 0.809·20-s + 0.417·23-s − 0.513·26-s + 0.305·28-s + 0.928·29-s + 0.274·31-s − 0.993·32-s − 0.211·34-s + 0.377·35-s + 1.22·37-s + 0.749·38-s − 0.790·40-s − 1.01·41-s − 0.0720·43-s − 0.182·46-s − 0.0769·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7623 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(7623\)    =    \(3^{2} \cdot 7 \cdot 11^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{7623} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 7623,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $0.7258750129$
$L(\frac12)$  $\approx$  $0.7258750129$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;7,\;11\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{3,\;7,\;11\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good2 \( 1 + 0.618T + 2T^{2} \)
5 \( 1 + 2.23T + 5T^{2} \)
13 \( 1 - 4.23T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 + 7.47T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 5T + 29T^{2} \)
31 \( 1 - 1.52T + 31T^{2} \)
37 \( 1 - 7.47T + 37T^{2} \)
41 \( 1 + 6.47T + 41T^{2} \)
43 \( 1 + 0.472T + 43T^{2} \)
47 \( 1 + 0.527T + 47T^{2} \)
53 \( 1 - 2.47T + 53T^{2} \)
59 \( 1 - 9.94T + 59T^{2} \)
61 \( 1 + 3.52T + 61T^{2} \)
67 \( 1 + 13.1T + 67T^{2} \)
71 \( 1 + 6.47T + 71T^{2} \)
73 \( 1 + 2.70T + 73T^{2} \)
79 \( 1 + 8.47T + 79T^{2} \)
83 \( 1 - 16.4T + 83T^{2} \)
89 \( 1 + 8.47T + 89T^{2} \)
97 \( 1 + 17.4T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.068525426037856782283717373937, −7.37975144829213036071411583800, −6.51195704777086668620401400515, −5.89571483048926721200884005157, −4.87593648425912416663440445001, −4.17806742122661092475262955999, −3.74877569420850693272746386257, −2.82670851124901494302144256654, −1.46774441461409195078879817024, −0.48989743324104262001226516657, 0.48989743324104262001226516657, 1.46774441461409195078879817024, 2.82670851124901494302144256654, 3.74877569420850693272746386257, 4.17806742122661092475262955999, 4.87593648425912416663440445001, 5.89571483048926721200884005157, 6.51195704777086668620401400515, 7.37975144829213036071411583800, 8.068525426037856782283717373937

Graph of the $Z$-function along the critical line