Properties

Label 8-7605e4-1.1-c1e4-0-3
Degree $8$
Conductor $3.345\times 10^{15}$
Sign $1$
Analytic cond. $1.35989\times 10^{7}$
Root an. cond. $7.79270$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4-s − 4·5-s − 10·7-s − 4·8-s − 8·10-s − 20·14-s + 2·17-s − 16·19-s + 4·20-s + 10·23-s + 10·25-s + 10·28-s − 8·29-s − 8·31-s + 2·32-s + 4·34-s + 40·35-s + 2·37-s − 32·38-s + 16·40-s + 8·41-s − 2·43-s + 20·46-s + 8·47-s + 42·49-s + 20·50-s + ⋯
L(s)  = 1  + 1.41·2-s − 1/2·4-s − 1.78·5-s − 3.77·7-s − 1.41·8-s − 2.52·10-s − 5.34·14-s + 0.485·17-s − 3.67·19-s + 0.894·20-s + 2.08·23-s + 2·25-s + 1.88·28-s − 1.48·29-s − 1.43·31-s + 0.353·32-s + 0.685·34-s + 6.76·35-s + 0.328·37-s − 5.19·38-s + 2.52·40-s + 1.24·41-s − 0.304·43-s + 2.94·46-s + 1.16·47-s + 6·49-s + 2.82·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(1.35989\times 10^{7}\)
Root analytic conductor: \(7.79270\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 3^{8} \cdot 5^{4} \cdot 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 + T )^{4} \)
13 \( 1 \)
good2$D_4\times C_2$ \( 1 - p T + 5 T^{2} - p^{3} T^{3} + 13 T^{4} - p^{4} T^{5} + 5 p^{2} T^{6} - p^{4} T^{7} + p^{4} T^{8} \)
7$C_2 \wr C_2\wr C_2$ \( 1 + 10 T + 58 T^{2} + 232 T^{3} + 703 T^{4} + 232 p T^{5} + 58 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2^2 \wr C_2$ \( 1 + 14 T^{2} + 9 p T^{4} + 14 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 2 T + 50 T^{2} - 92 T^{3} + 1135 T^{4} - 92 p T^{5} + 50 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 + 8 T + 51 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2 \wr C_2\wr C_2$ \( 1 - 10 T + 98 T^{2} - 544 T^{3} + 137 p T^{4} - 544 p T^{5} + 98 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2 \wr C_2\wr C_2$ \( 1 + 8 T + 98 T^{2} + 656 T^{3} + 4003 T^{4} + 656 p T^{5} + 98 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2 \wr C_2\wr C_2$ \( 1 - 2 T + 94 T^{2} - 260 T^{3} + 4219 T^{4} - 260 p T^{5} + 94 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 4 T + 83 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2 \wr C_2\wr C_2$ \( 1 + 2 T + 154 T^{2} + 248 T^{3} + 9559 T^{4} + 248 p T^{5} + 154 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2 \wr C_2\wr C_2$ \( 1 - 8 T + 116 T^{2} - 392 T^{3} + 5158 T^{4} - 392 p T^{5} + 116 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2 \wr C_2\wr C_2$ \( 1 - 12 T + 248 T^{2} - 36 p T^{3} + 20622 T^{4} - 36 p^{2} T^{5} + 248 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
59$C_2 \wr C_2\wr C_2$ \( 1 - 12 T + 266 T^{2} - 2136 T^{3} + 24423 T^{4} - 2136 p T^{5} + 266 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2 \wr C_2\wr C_2$ \( 1 - 28 T + 502 T^{2} - 6088 T^{3} + 55063 T^{4} - 6088 p T^{5} + 502 p^{2} T^{6} - 28 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2 \wr C_2\wr C_2$ \( 1 + 30 T + 598 T^{2} + 7608 T^{3} + 73923 T^{4} + 7608 p T^{5} + 598 p^{2} T^{6} + 30 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2 \wr C_2\wr C_2$ \( 1 - 4 T + 74 T^{2} - 424 T^{3} + 10903 T^{4} - 424 p T^{5} + 74 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2 \wr C_2\wr C_2$ \( 1 - 8 T + 208 T^{2} - 920 T^{3} + 17998 T^{4} - 920 p T^{5} + 208 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2 \wr C_2\wr C_2$ \( 1 + 8 T + 184 T^{2} + 1256 T^{3} + 21022 T^{4} + 1256 p T^{5} + 184 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
83$C_2 \wr C_2\wr C_2$ \( 1 + 12 T + 308 T^{2} + 2700 T^{3} + 37158 T^{4} + 2700 p T^{5} + 308 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2 \wr C_2\wr C_2$ \( 1 + 12 T + 122 T^{2} + 1056 T^{3} + 14727 T^{4} + 1056 p T^{5} + 122 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2 \wr C_2\wr C_2$ \( 1 + 2 T + 298 T^{2} + 956 T^{3} + 38551 T^{4} + 956 p T^{5} + 298 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.95650588509853899243655960850, −5.55153982518099371822449883205, −5.53587662728401401127953027312, −5.38010618761966940497442970981, −5.17774697704448126170539498316, −4.93148488746834441085294816448, −4.54705897694444845142250272921, −4.52499150314783164031021183604, −4.33782133692622593527616771527, −4.07590574891540434307633999927, −3.93307161307779342757834079421, −3.91375038412828249444600803438, −3.86745679446285289143281458663, −3.47528257782958138650524801517, −3.31251905765708186129095668421, −3.27942513046018057843345005413, −2.99598935602772914447834642343, −2.69418708577891787481258806412, −2.54311167586000211594567115505, −2.28756446685875360645255835729, −2.21494868329170422135866393037, −1.76592822037453618859097847637, −1.16615682181981048647370665586, −0.999571685834608483610930513553, −0.790935381588120258118418297716, 0, 0, 0, 0, 0.790935381588120258118418297716, 0.999571685834608483610930513553, 1.16615682181981048647370665586, 1.76592822037453618859097847637, 2.21494868329170422135866393037, 2.28756446685875360645255835729, 2.54311167586000211594567115505, 2.69418708577891787481258806412, 2.99598935602772914447834642343, 3.27942513046018057843345005413, 3.31251905765708186129095668421, 3.47528257782958138650524801517, 3.86745679446285289143281458663, 3.91375038412828249444600803438, 3.93307161307779342757834079421, 4.07590574891540434307633999927, 4.33782133692622593527616771527, 4.52499150314783164031021183604, 4.54705897694444845142250272921, 4.93148488746834441085294816448, 5.17774697704448126170539498316, 5.38010618761966940497442970981, 5.53587662728401401127953027312, 5.55153982518099371822449883205, 5.95650588509853899243655960850

Graph of the $Z$-function along the critical line