Properties

Label 6-7605e3-1.1-c1e3-0-13
Degree $6$
Conductor $439842970125$
Sign $-1$
Analytic cond. $223938.$
Root an. cond. $7.79270$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 3·7-s + 2·8-s − 12·19-s + 6·25-s − 6·29-s − 3·31-s − 9·35-s − 6·37-s + 6·40-s + 9·43-s − 12·47-s − 9·49-s − 6·56-s − 6·59-s − 3·61-s − 4·64-s − 9·67-s − 12·71-s − 21·73-s − 3·79-s − 18·83-s + 30·89-s − 36·95-s − 15·97-s + 24·101-s + 9·103-s + ⋯
L(s)  = 1  + 1.34·5-s − 1.13·7-s + 0.707·8-s − 2.75·19-s + 6/5·25-s − 1.11·29-s − 0.538·31-s − 1.52·35-s − 0.986·37-s + 0.948·40-s + 1.37·43-s − 1.75·47-s − 9/7·49-s − 0.801·56-s − 0.781·59-s − 0.384·61-s − 1/2·64-s − 1.09·67-s − 1.42·71-s − 2.45·73-s − 0.337·79-s − 1.97·83-s + 3.17·89-s − 3.69·95-s − 1.52·97-s + 2.38·101-s + 0.886·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{6} \cdot 5^{3} \cdot 13^{6}\)
Sign: $-1$
Analytic conductor: \(223938.\)
Root analytic conductor: \(7.79270\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 3^{6} \cdot 5^{3} \cdot 13^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 - T )^{3} \)
13 \( 1 \)
good2$D_{6}$ \( 1 - p T^{3} + p^{3} T^{6} \)
7$S_4\times C_2$ \( 1 + 3 T + 18 T^{2} + 39 T^{3} + 18 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 + 9 T^{2} + 16 T^{3} + 9 p T^{4} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 9 T^{2} + 98 T^{3} + 9 p T^{4} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 + 12 T + 93 T^{2} + 460 T^{3} + 93 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + 21 T^{2} - 96 T^{3} + 21 p T^{4} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 6 T + 3 p T^{2} + 334 T^{3} + 3 p^{2} T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 + 3 T - 177 T^{3} + 3 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 6 T + 75 T^{2} + 452 T^{3} + 75 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 + 99 T^{2} + 26 T^{3} + 99 p T^{4} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 9 T + 144 T^{2} - 763 T^{3} + 144 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 12 T + 135 T^{2} + 922 T^{3} + 135 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 135 T^{2} - 16 T^{3} + 135 p T^{4} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 + 6 T + 165 T^{2} + 694 T^{3} + 165 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 3 T + 162 T^{2} + 299 T^{3} + 162 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 9 T + 120 T^{2} + 855 T^{3} + 120 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 + 12 T + 165 T^{2} + 1022 T^{3} + 165 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 21 T + 312 T^{2} + 2977 T^{3} + 312 p T^{4} + 21 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 + 3 T + 144 T^{2} + 111 T^{3} + 144 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 18 T + 309 T^{2} + 2820 T^{3} + 309 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 - 30 T + 555 T^{2} - 6222 T^{3} + 555 p T^{4} - 30 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 + 15 T + 282 T^{2} + 2321 T^{3} + 282 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.26751085836695021815108974995, −7.04910265352168294128889649272, −6.72448111164943452419810166337, −6.47198296561747758070656703590, −6.34252055364059662500374024090, −6.31339064940290526172002092441, −5.90584262395930892676214656707, −5.76111336381996644627705596445, −5.57872573533584207235905825244, −5.18726328580393753610357782212, −4.82976939833189375859134873866, −4.66827465519160561276170367934, −4.66055279659388285275401737230, −3.99627831995318337721132492919, −3.95718905851133141008080033123, −3.87826655564846433774822227088, −3.19527796236239245220368452352, −3.16371099255121964907188189966, −2.78783314704637761110866440851, −2.59359193434862546954718694390, −2.17749890594373206039450747732, −1.90147249794719231574300785471, −1.65912598273195686657349874909, −1.40428884928330874270402697359, −1.14176125531208770803233411891, 0, 0, 0, 1.14176125531208770803233411891, 1.40428884928330874270402697359, 1.65912598273195686657349874909, 1.90147249794719231574300785471, 2.17749890594373206039450747732, 2.59359193434862546954718694390, 2.78783314704637761110866440851, 3.16371099255121964907188189966, 3.19527796236239245220368452352, 3.87826655564846433774822227088, 3.95718905851133141008080033123, 3.99627831995318337721132492919, 4.66055279659388285275401737230, 4.66827465519160561276170367934, 4.82976939833189375859134873866, 5.18726328580393753610357782212, 5.57872573533584207235905825244, 5.76111336381996644627705596445, 5.90584262395930892676214656707, 6.31339064940290526172002092441, 6.34252055364059662500374024090, 6.47198296561747758070656703590, 6.72448111164943452419810166337, 7.04910265352168294128889649272, 7.26751085836695021815108974995

Graph of the $Z$-function along the critical line