Properties

Label 6-7605e3-1.1-c1e3-0-7
Degree $6$
Conductor $439842970125$
Sign $-1$
Analytic cond. $223938.$
Root an. cond. $7.79270$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·4-s + 3·5-s − 12·7-s + 4·8-s − 3·10-s + 6·11-s + 12·14-s + 3·16-s − 15·17-s + 19-s − 9·20-s − 6·22-s + 3·23-s + 6·25-s + 36·28-s − 2·29-s + 13·31-s − 6·32-s + 15·34-s − 36·35-s + 2·37-s − 38-s + 12·40-s − 6·41-s + 2·43-s − 18·44-s + ⋯
L(s)  = 1  − 0.707·2-s − 3/2·4-s + 1.34·5-s − 4.53·7-s + 1.41·8-s − 0.948·10-s + 1.80·11-s + 3.20·14-s + 3/4·16-s − 3.63·17-s + 0.229·19-s − 2.01·20-s − 1.27·22-s + 0.625·23-s + 6/5·25-s + 6.80·28-s − 0.371·29-s + 2.33·31-s − 1.06·32-s + 2.57·34-s − 6.08·35-s + 0.328·37-s − 0.162·38-s + 1.89·40-s − 0.937·41-s + 0.304·43-s − 2.71·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{6} \cdot 5^{3} \cdot 13^{6}\)
Sign: $-1$
Analytic conductor: \(223938.\)
Root analytic conductor: \(7.79270\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 3^{6} \cdot 5^{3} \cdot 13^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 - T )^{3} \)
13 \( 1 \)
good2$A_4\times C_2$ \( 1 + T + p^{2} T^{2} + 3 T^{3} + p^{3} T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{3} \)
11$A_4\times C_2$ \( 1 - 6 T + 17 T^{2} - 28 T^{3} + 17 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
17$A_4\times C_2$ \( 1 + 15 T + 7 p T^{2} + 593 T^{3} + 7 p^{2} T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \)
19$A_4\times C_2$ \( 1 - T + 13 T^{2} + 89 T^{3} + 13 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
23$A_4\times C_2$ \( 1 - 3 T + p T^{2} - 41 T^{3} + p^{2} T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
29$C_6$ \( 1 + 2 T + 51 T^{2} + 108 T^{3} + 51 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
31$A_4\times C_2$ \( 1 - 13 T + 105 T^{2} - 583 T^{3} + 105 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} \)
37$A_4\times C_2$ \( 1 - 2 T - 9 T^{2} + 196 T^{3} - 9 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
41$A_4\times C_2$ \( 1 + 6 T + 51 T^{2} + 276 T^{3} + 51 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
43$A_4\times C_2$ \( 1 - 2 T + 65 T^{2} + 60 T^{3} + 65 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
47$A_4\times C_2$ \( 1 - 9 T + 105 T^{2} - 873 T^{3} + 105 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
53$A_4\times C_2$ \( 1 - T + 101 T^{2} - 119 T^{3} + 101 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
59$A_4\times C_2$ \( 1 - 14 T + 3 p T^{2} - 1596 T^{3} + 3 p^{2} T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \)
61$A_4\times C_2$ \( 1 - 9 T + 161 T^{2} - 1069 T^{3} + 161 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
67$A_4\times C_2$ \( 1 - 12 T + 53 T^{2} - 160 T^{3} + 53 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
71$A_4\times C_2$ \( 1 + 4 T + 181 T^{2} + 504 T^{3} + 181 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
73$A_4\times C_2$ \( 1 + 4 T + 215 T^{2} + 576 T^{3} + 215 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
79$A_4\times C_2$ \( 1 + 19 T + 285 T^{2} + 2653 T^{3} + 285 p T^{4} + 19 p^{2} T^{5} + p^{3} T^{6} \)
83$A_4\times C_2$ \( 1 + 11 T + 203 T^{2} + 1867 T^{3} + 203 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \)
89$A_4\times C_2$ \( 1 + 12 T + 231 T^{2} + 1920 T^{3} + 231 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
97$A_4\times C_2$ \( 1 - 20 T + 415 T^{2} - 4112 T^{3} + 415 p T^{4} - 20 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.03919485549695784241187376218, −6.92781385078071678937731539372, −6.74463061136931774269186503854, −6.63963476205521154352416039535, −6.31776468449709642497610278420, −6.26112252148751132656557465889, −6.25407657055017165945267753272, −5.72316708073071230833919436196, −5.57897628140360803884546521714, −5.28722098685324247169890469343, −4.77765491573244976979147487098, −4.65602603618543809541210044412, −4.43642775208533803047423978477, −4.05211855016842051337082823228, −3.91071103250602498747809258022, −3.73889384833704419925650697321, −3.41386419043738701643663282976, −3.21902491428633574642340557123, −2.60076113971226188369106729342, −2.58816694958621094452525308425, −2.37994831550453648784706006307, −2.19778253531805911406355116416, −1.29359667207414693123325955088, −1.05949942705748576116678424625, −0.884380182825092990153487590383, 0, 0, 0, 0.884380182825092990153487590383, 1.05949942705748576116678424625, 1.29359667207414693123325955088, 2.19778253531805911406355116416, 2.37994831550453648784706006307, 2.58816694958621094452525308425, 2.60076113971226188369106729342, 3.21902491428633574642340557123, 3.41386419043738701643663282976, 3.73889384833704419925650697321, 3.91071103250602498747809258022, 4.05211855016842051337082823228, 4.43642775208533803047423978477, 4.65602603618543809541210044412, 4.77765491573244976979147487098, 5.28722098685324247169890469343, 5.57897628140360803884546521714, 5.72316708073071230833919436196, 6.25407657055017165945267753272, 6.26112252148751132656557465889, 6.31776468449709642497610278420, 6.63963476205521154352416039535, 6.74463061136931774269186503854, 6.92781385078071678937731539372, 7.03919485549695784241187376218

Graph of the $Z$-function along the critical line