Properties

Label 2-76-19.7-c7-0-9
Degree $2$
Conductor $76$
Sign $-0.488 + 0.872i$
Analytic cond. $23.7412$
Root an. cond. $4.87250$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (20.2 + 35.0i)3-s + (−90.2 − 156. i)5-s + 231.·7-s + (274. − 475. i)9-s − 4.27e3·11-s + (−3.99e3 + 6.91e3i)13-s + (3.65e3 − 6.32e3i)15-s + (−1.54e4 − 2.67e4i)17-s + (−2.91e4 + 6.68e3i)19-s + (4.68e3 + 8.11e3i)21-s + (2.41e3 − 4.17e3i)23-s + (2.27e4 − 3.94e4i)25-s + 1.10e5·27-s + (9.75e4 − 1.68e5i)29-s − 2.40e5·31-s + ⋯
L(s)  = 1  + (0.432 + 0.749i)3-s + (−0.322 − 0.559i)5-s + 0.255·7-s + (0.125 − 0.217i)9-s − 0.968·11-s + (−0.504 + 0.873i)13-s + (0.279 − 0.484i)15-s + (−0.763 − 1.32i)17-s + (−0.974 + 0.223i)19-s + (0.110 + 0.191i)21-s + (0.0413 − 0.0716i)23-s + (0.291 − 0.504i)25-s + 1.08·27-s + (0.742 − 1.28i)29-s − 1.45·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.488 + 0.872i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.488 + 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76\)    =    \(2^{2} \cdot 19\)
Sign: $-0.488 + 0.872i$
Analytic conductor: \(23.7412\)
Root analytic conductor: \(4.87250\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{76} (45, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 76,\ (\ :7/2),\ -0.488 + 0.872i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.387808 - 0.661891i\)
\(L(\frac12)\) \(\approx\) \(0.387808 - 0.661891i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + (2.91e4 - 6.68e3i)T \)
good3 \( 1 + (-20.2 - 35.0i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 + (90.2 + 156. i)T + (-3.90e4 + 6.76e4i)T^{2} \)
7 \( 1 - 231.T + 8.23e5T^{2} \)
11 \( 1 + 4.27e3T + 1.94e7T^{2} \)
13 \( 1 + (3.99e3 - 6.91e3i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 + (1.54e4 + 2.67e4i)T + (-2.05e8 + 3.55e8i)T^{2} \)
23 \( 1 + (-2.41e3 + 4.17e3i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (-9.75e4 + 1.68e5i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 + 2.40e5T + 2.75e10T^{2} \)
37 \( 1 - 1.37e5T + 9.49e10T^{2} \)
41 \( 1 + (2.88e5 + 5.00e5i)T + (-9.73e10 + 1.68e11i)T^{2} \)
43 \( 1 + (3.95e5 + 6.85e5i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + (3.22e5 - 5.59e5i)T + (-2.53e11 - 4.38e11i)T^{2} \)
53 \( 1 + (-2.84e5 + 4.92e5i)T + (-5.87e11 - 1.01e12i)T^{2} \)
59 \( 1 + (-9.17e5 - 1.58e6i)T + (-1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (-4.51e5 + 7.82e5i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (9.52e5 - 1.64e6i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (1.01e6 + 1.75e6i)T + (-4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 + (-2.40e6 - 4.16e6i)T + (-5.52e12 + 9.56e12i)T^{2} \)
79 \( 1 + (-1.10e6 - 1.91e6i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 + 3.20e5T + 2.71e13T^{2} \)
89 \( 1 + (3.24e6 - 5.62e6i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + (-6.46e5 - 1.11e6i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69168017184200284566834584801, −11.60343069077273397159399842623, −10.32021625447945823892844538324, −9.259355495583575346954414051322, −8.337318732462912044862724452496, −6.89870497048969203728428603179, −4.99647149093067201485735799144, −4.10867768306426310031432535097, −2.38775347326678275497679698097, −0.23010889285931899824619051109, 1.79698541308469792152911718642, 3.07741498677393727478716912592, 4.92722829201573044459598140713, 6.62473779785212946348158266783, 7.71662259291174813109096181466, 8.495640783896619333695438660956, 10.34384387463525421339251673705, 11.06891445423621388849371275002, 12.81570276970959753082351076449, 13.07355046735245303883722817887

Graph of the $Z$-function along the critical line