Properties

Label 12-76e6-1.1-c7e6-0-0
Degree $12$
Conductor $192699928576$
Sign $1$
Analytic cond. $1.79069\times 10^{8}$
Root an. cond. $4.87250$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 40·3-s + 279·5-s − 1.56e3·7-s − 3.81e3·9-s + 7.98e3·11-s + 1.25e3·13-s + 1.11e4·15-s + 2.17e4·17-s + 4.11e4·19-s − 6.26e4·21-s + 1.00e5·23-s − 8.80e3·25-s − 2.46e4·27-s − 5.86e4·29-s + 4.03e5·31-s + 3.19e5·33-s − 4.36e5·35-s + 8.08e5·37-s + 5.00e4·39-s + 5.56e5·41-s + 1.22e6·43-s − 1.06e6·45-s + 1.91e6·47-s − 2.23e5·49-s + 8.69e5·51-s + 5.11e5·53-s + 2.22e6·55-s + ⋯
L(s)  = 1  + 0.855·3-s + 0.998·5-s − 1.72·7-s − 1.74·9-s + 1.80·11-s + 0.157·13-s + 0.853·15-s + 1.07·17-s + 1.37·19-s − 1.47·21-s + 1.72·23-s − 0.112·25-s − 0.241·27-s − 0.446·29-s + 2.43·31-s + 1.54·33-s − 1.72·35-s + 2.62·37-s + 0.134·39-s + 1.26·41-s + 2.34·43-s − 1.73·45-s + 2.69·47-s − 0.270·49-s + 0.917·51-s + 0.472·53-s + 1.80·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{12} \cdot 19^{6}\)
Sign: $1$
Analytic conductor: \(1.79069\times 10^{8}\)
Root analytic conductor: \(4.87250\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{12} \cdot 19^{6} ,\ ( \ : [7/2]^{6} ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(21.24756649\)
\(L(\frac12)\) \(\approx\) \(21.24756649\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( ( 1 - p^{3} T )^{6} \)
good3 \( 1 - 40 T + 5411 T^{2} - 344210 T^{3} + 6991901 p T^{4} - 139790290 p^{2} T^{5} + 1981289758 p^{3} T^{6} - 139790290 p^{9} T^{7} + 6991901 p^{15} T^{8} - 344210 p^{21} T^{9} + 5411 p^{28} T^{10} - 40 p^{35} T^{11} + p^{42} T^{12} \)
5 \( 1 - 279 T + 86643 T^{2} - 19645164 T^{3} + 719997309 p T^{4} - 50853044601 p^{2} T^{5} + 5063034158822 p^{3} T^{6} - 50853044601 p^{9} T^{7} + 719997309 p^{15} T^{8} - 19645164 p^{21} T^{9} + 86643 p^{28} T^{10} - 279 p^{35} T^{11} + p^{42} T^{12} \)
7 \( 1 + 1565 T + 2672300 T^{2} + 2813863905 T^{3} + 3977972497228 T^{4} + 3738876959850925 T^{5} + 4059409837612988806 T^{6} + 3738876959850925 p^{7} T^{7} + 3977972497228 p^{14} T^{8} + 2813863905 p^{21} T^{9} + 2672300 p^{28} T^{10} + 1565 p^{35} T^{11} + p^{42} T^{12} \)
11 \( 1 - 7983 T + 79155245 T^{2} - 344914163226 T^{3} + 1872143133442003 T^{4} - 420087653519920569 p T^{5} + \)\(27\!\cdots\!02\)\( T^{6} - 420087653519920569 p^{8} T^{7} + 1872143133442003 p^{14} T^{8} - 344914163226 p^{21} T^{9} + 79155245 p^{28} T^{10} - 7983 p^{35} T^{11} + p^{42} T^{12} \)
13 \( 1 - 1250 T + 254204373 T^{2} - 398722809000 T^{3} + 31679950959139771 T^{4} - 3835371453362245910 p T^{5} + \)\(24\!\cdots\!90\)\( T^{6} - 3835371453362245910 p^{8} T^{7} + 31679950959139771 p^{14} T^{8} - 398722809000 p^{21} T^{9} + 254204373 p^{28} T^{10} - 1250 p^{35} T^{11} + p^{42} T^{12} \)
17 \( 1 - 21735 T + 1297723454 T^{2} - 7847582348805 T^{3} + 382716495376161820 T^{4} + \)\(77\!\cdots\!25\)\( T^{5} + \)\(23\!\cdots\!08\)\( T^{6} + \)\(77\!\cdots\!25\)\( p^{7} T^{7} + 382716495376161820 p^{14} T^{8} - 7847582348805 p^{21} T^{9} + 1297723454 p^{28} T^{10} - 21735 p^{35} T^{11} + p^{42} T^{12} \)
23 \( 1 - 100920 T + 20144641481 T^{2} - 1566830611331520 T^{3} + \)\(17\!\cdots\!75\)\( T^{4} - \)\(10\!\cdots\!00\)\( T^{5} + \)\(77\!\cdots\!74\)\( T^{6} - \)\(10\!\cdots\!00\)\( p^{7} T^{7} + \)\(17\!\cdots\!75\)\( p^{14} T^{8} - 1566830611331520 p^{21} T^{9} + 20144641481 p^{28} T^{10} - 100920 p^{35} T^{11} + p^{42} T^{12} \)
29 \( 1 + 58656 T + 7787355525 T^{2} + 564070136044080 T^{3} + \)\(43\!\cdots\!79\)\( T^{4} + \)\(18\!\cdots\!24\)\( T^{5} + \)\(14\!\cdots\!74\)\( T^{6} + \)\(18\!\cdots\!24\)\( p^{7} T^{7} + \)\(43\!\cdots\!79\)\( p^{14} T^{8} + 564070136044080 p^{21} T^{9} + 7787355525 p^{28} T^{10} + 58656 p^{35} T^{11} + p^{42} T^{12} \)
31 \( 1 - 403808 T + 183431749962 T^{2} - 51429012710603808 T^{3} + \)\(13\!\cdots\!31\)\( T^{4} - \)\(27\!\cdots\!44\)\( T^{5} + \)\(48\!\cdots\!16\)\( T^{6} - \)\(27\!\cdots\!44\)\( p^{7} T^{7} + \)\(13\!\cdots\!31\)\( p^{14} T^{8} - 51429012710603808 p^{21} T^{9} + 183431749962 p^{28} T^{10} - 403808 p^{35} T^{11} + p^{42} T^{12} \)
37 \( 1 - 808780 T + 20158051586 p T^{2} - 392964738382607340 T^{3} + \)\(20\!\cdots\!19\)\( T^{4} - \)\(75\!\cdots\!20\)\( T^{5} + \)\(26\!\cdots\!28\)\( T^{6} - \)\(75\!\cdots\!20\)\( p^{7} T^{7} + \)\(20\!\cdots\!19\)\( p^{14} T^{8} - 392964738382607340 p^{21} T^{9} + 20158051586 p^{29} T^{10} - 808780 p^{35} T^{11} + p^{42} T^{12} \)
41 \( 1 - 13584 p T + 842468930078 T^{2} - 367901854557576240 T^{3} + \)\(31\!\cdots\!07\)\( T^{4} - \)\(11\!\cdots\!76\)\( T^{5} + \)\(74\!\cdots\!84\)\( T^{6} - \)\(11\!\cdots\!76\)\( p^{7} T^{7} + \)\(31\!\cdots\!07\)\( p^{14} T^{8} - 367901854557576240 p^{21} T^{9} + 842468930078 p^{28} T^{10} - 13584 p^{36} T^{11} + p^{42} T^{12} \)
43 \( 1 - 1220735 T + 1789847433669 T^{2} - 1516343477860082430 T^{3} + \)\(12\!\cdots\!51\)\( T^{4} - \)\(78\!\cdots\!95\)\( T^{5} + \)\(44\!\cdots\!94\)\( T^{6} - \)\(78\!\cdots\!95\)\( p^{7} T^{7} + \)\(12\!\cdots\!51\)\( p^{14} T^{8} - 1516343477860082430 p^{21} T^{9} + 1789847433669 p^{28} T^{10} - 1220735 p^{35} T^{11} + p^{42} T^{12} \)
47 \( 1 - 1915305 T + 2655656379941 T^{2} - 2701214572729595550 T^{3} + \)\(24\!\cdots\!15\)\( T^{4} - \)\(19\!\cdots\!45\)\( T^{5} + \)\(14\!\cdots\!82\)\( T^{6} - \)\(19\!\cdots\!45\)\( p^{7} T^{7} + \)\(24\!\cdots\!15\)\( p^{14} T^{8} - 2701214572729595550 p^{21} T^{9} + 2655656379941 p^{28} T^{10} - 1915305 p^{35} T^{11} + p^{42} T^{12} \)
53 \( 1 - 511650 T + 3307629824861 T^{2} - 1968954407634024000 T^{3} + \)\(70\!\cdots\!47\)\( T^{4} - \)\(35\!\cdots\!90\)\( T^{5} + \)\(10\!\cdots\!90\)\( T^{6} - \)\(35\!\cdots\!90\)\( p^{7} T^{7} + \)\(70\!\cdots\!47\)\( p^{14} T^{8} - 1968954407634024000 p^{21} T^{9} + 3307629824861 p^{28} T^{10} - 511650 p^{35} T^{11} + p^{42} T^{12} \)
59 \( 1 - 1300572 T + 13383936834587 T^{2} - 240978513093007782 p T^{3} + \)\(78\!\cdots\!75\)\( T^{4} - \)\(66\!\cdots\!82\)\( T^{5} + \)\(25\!\cdots\!98\)\( T^{6} - \)\(66\!\cdots\!82\)\( p^{7} T^{7} + \)\(78\!\cdots\!75\)\( p^{14} T^{8} - 240978513093007782 p^{22} T^{9} + 13383936834587 p^{28} T^{10} - 1300572 p^{35} T^{11} + p^{42} T^{12} \)
61 \( 1 - 565335 T + 10120738319115 T^{2} - 5318475573785836408 T^{3} + \)\(82\!\cdots\!05\)\( p T^{4} - \)\(25\!\cdots\!45\)\( T^{5} + \)\(17\!\cdots\!38\)\( T^{6} - \)\(25\!\cdots\!45\)\( p^{7} T^{7} + \)\(82\!\cdots\!05\)\( p^{15} T^{8} - 5318475573785836408 p^{21} T^{9} + 10120738319115 p^{28} T^{10} - 565335 p^{35} T^{11} + p^{42} T^{12} \)
67 \( 1 + 45010 T + 19893322568571 T^{2} + 2865845138838640470 T^{3} + \)\(23\!\cdots\!31\)\( T^{4} + \)\(31\!\cdots\!40\)\( T^{5} + \)\(17\!\cdots\!66\)\( T^{6} + \)\(31\!\cdots\!40\)\( p^{7} T^{7} + \)\(23\!\cdots\!31\)\( p^{14} T^{8} + 2865845138838640470 p^{21} T^{9} + 19893322568571 p^{28} T^{10} + 45010 p^{35} T^{11} + p^{42} T^{12} \)
71 \( 1 + 1424106 T + 40418570081954 T^{2} + 46033418838784453998 T^{3} + \)\(76\!\cdots\!59\)\( T^{4} + \)\(71\!\cdots\!76\)\( T^{5} + \)\(87\!\cdots\!36\)\( T^{6} + \)\(71\!\cdots\!76\)\( p^{7} T^{7} + \)\(76\!\cdots\!59\)\( p^{14} T^{8} + 46033418838784453998 p^{21} T^{9} + 40418570081954 p^{28} T^{10} + 1424106 p^{35} T^{11} + p^{42} T^{12} \)
73 \( 1 + 11153825 T + 112420865725058 T^{2} + \)\(70\!\cdots\!35\)\( T^{3} + \)\(39\!\cdots\!52\)\( T^{4} + \)\(16\!\cdots\!85\)\( T^{5} + \)\(62\!\cdots\!16\)\( T^{6} + \)\(16\!\cdots\!85\)\( p^{7} T^{7} + \)\(39\!\cdots\!52\)\( p^{14} T^{8} + \)\(70\!\cdots\!35\)\( p^{21} T^{9} + 112420865725058 p^{28} T^{10} + 11153825 p^{35} T^{11} + p^{42} T^{12} \)
79 \( 1 + 6392144 T + 118048164146294 T^{2} + \)\(57\!\cdots\!60\)\( T^{3} + \)\(56\!\cdots\!95\)\( T^{4} + \)\(21\!\cdots\!44\)\( T^{5} + \)\(14\!\cdots\!16\)\( T^{6} + \)\(21\!\cdots\!44\)\( p^{7} T^{7} + \)\(56\!\cdots\!95\)\( p^{14} T^{8} + \)\(57\!\cdots\!60\)\( p^{21} T^{9} + 118048164146294 p^{28} T^{10} + 6392144 p^{35} T^{11} + p^{42} T^{12} \)
83 \( 1 + 3164160 T + 59613618243566 T^{2} + \)\(30\!\cdots\!60\)\( T^{3} + \)\(27\!\cdots\!35\)\( T^{4} + \)\(11\!\cdots\!20\)\( T^{5} + \)\(94\!\cdots\!64\)\( T^{6} + \)\(11\!\cdots\!20\)\( p^{7} T^{7} + \)\(27\!\cdots\!35\)\( p^{14} T^{8} + \)\(30\!\cdots\!60\)\( p^{21} T^{9} + 59613618243566 p^{28} T^{10} + 3164160 p^{35} T^{11} + p^{42} T^{12} \)
89 \( 1 + 14502678 T + 153305978961542 T^{2} + \)\(98\!\cdots\!70\)\( T^{3} + \)\(80\!\cdots\!27\)\( T^{4} + \)\(58\!\cdots\!72\)\( T^{5} + \)\(47\!\cdots\!76\)\( T^{6} + \)\(58\!\cdots\!72\)\( p^{7} T^{7} + \)\(80\!\cdots\!27\)\( p^{14} T^{8} + \)\(98\!\cdots\!70\)\( p^{21} T^{9} + 153305978961542 p^{28} T^{10} + 14502678 p^{35} T^{11} + p^{42} T^{12} \)
97 \( 1 + 21377010 T + 439599102471762 T^{2} + \)\(63\!\cdots\!30\)\( T^{3} + \)\(81\!\cdots\!63\)\( T^{4} + \)\(85\!\cdots\!20\)\( T^{5} + \)\(85\!\cdots\!20\)\( T^{6} + \)\(85\!\cdots\!20\)\( p^{7} T^{7} + \)\(81\!\cdots\!63\)\( p^{14} T^{8} + \)\(63\!\cdots\!30\)\( p^{21} T^{9} + 439599102471762 p^{28} T^{10} + 21377010 p^{35} T^{11} + p^{42} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.67574488800335884529867457285, −6.18657122260240903635275601144, −6.17320406072806216890235118344, −6.04694164979073317308391147589, −5.82553702903268803773392981117, −5.68471044237962129875672287353, −5.58761163664648003385882343442, −5.07397254970131380898691863104, −4.67595830934158854072026646646, −4.56415112347354762337298952788, −4.24542963080829322498855044437, −3.88111449807515538802321559004, −3.79801490038615456046475074895, −3.39095682141689116028038862073, −2.91061033096202832380032045283, −2.83971026732950195504515494061, −2.75397476722405218750834688768, −2.71622296765460085729826411165, −2.44087952178708572018156984996, −1.63821292606797216676389609596, −1.38352089683944589921438345388, −1.13954020283370066529246591284, −0.76093887302894872095068258384, −0.65529836743731433622917632871, −0.44701571400132134004162103608, 0.44701571400132134004162103608, 0.65529836743731433622917632871, 0.76093887302894872095068258384, 1.13954020283370066529246591284, 1.38352089683944589921438345388, 1.63821292606797216676389609596, 2.44087952178708572018156984996, 2.71622296765460085729826411165, 2.75397476722405218750834688768, 2.83971026732950195504515494061, 2.91061033096202832380032045283, 3.39095682141689116028038862073, 3.79801490038615456046475074895, 3.88111449807515538802321559004, 4.24542963080829322498855044437, 4.56415112347354762337298952788, 4.67595830934158854072026646646, 5.07397254970131380898691863104, 5.58761163664648003385882343442, 5.68471044237962129875672287353, 5.82553702903268803773392981117, 6.04694164979073317308391147589, 6.17320406072806216890235118344, 6.18657122260240903635275601144, 6.67574488800335884529867457285

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.