Properties

Label 2-76-76.27-c5-0-37
Degree $2$
Conductor $76$
Sign $-0.443 + 0.896i$
Analytic cond. $12.1891$
Root an. cond. $3.49129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.64 + 0.364i)2-s + (2.01 − 3.48i)3-s + (31.7 − 4.11i)4-s + (54.6 − 94.7i)5-s + (−10.0 + 20.4i)6-s − 177. i·7-s + (−177. + 34.8i)8-s + (113. + 196. i)9-s + (−274. + 554. i)10-s + 61.3i·11-s + (49.5 − 118. i)12-s + (252. − 145. i)13-s + (64.5 + 9.99e2i)14-s + (−220. − 381. i)15-s + (990. − 261. i)16-s + (269. − 467. i)17-s + ⋯
L(s)  = 1  + (−0.997 + 0.0644i)2-s + (0.129 − 0.223i)3-s + (0.991 − 0.128i)4-s + (0.978 − 1.69i)5-s + (−0.114 + 0.231i)6-s − 1.36i·7-s + (−0.981 + 0.192i)8-s + (0.466 + 0.808i)9-s + (−0.866 + 1.75i)10-s + 0.152i·11-s + (0.0993 − 0.238i)12-s + (0.414 − 0.239i)13-s + (0.0880 + 1.36i)14-s + (−0.252 − 0.437i)15-s + (0.966 − 0.255i)16-s + (0.226 − 0.392i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.443 + 0.896i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.443 + 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76\)    =    \(2^{2} \cdot 19\)
Sign: $-0.443 + 0.896i$
Analytic conductor: \(12.1891\)
Root analytic conductor: \(3.49129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{76} (27, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 76,\ (\ :5/2),\ -0.443 + 0.896i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.700493 - 1.12770i\)
\(L(\frac12)\) \(\approx\) \(0.700493 - 1.12770i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (5.64 - 0.364i)T \)
19 \( 1 + (1.47e3 - 556. i)T \)
good3 \( 1 + (-2.01 + 3.48i)T + (-121.5 - 210. i)T^{2} \)
5 \( 1 + (-54.6 + 94.7i)T + (-1.56e3 - 2.70e3i)T^{2} \)
7 \( 1 + 177. iT - 1.68e4T^{2} \)
11 \( 1 - 61.3iT - 1.61e5T^{2} \)
13 \( 1 + (-252. + 145. i)T + (1.85e5 - 3.21e5i)T^{2} \)
17 \( 1 + (-269. + 467. i)T + (-7.09e5 - 1.22e6i)T^{2} \)
23 \( 1 + (2.54e3 - 1.46e3i)T + (3.21e6 - 5.57e6i)T^{2} \)
29 \( 1 + (-3.74e3 + 2.16e3i)T + (1.02e7 - 1.77e7i)T^{2} \)
31 \( 1 - 5.97e3T + 2.86e7T^{2} \)
37 \( 1 + 2.10e3iT - 6.93e7T^{2} \)
41 \( 1 + (-8.33e3 - 4.81e3i)T + (5.79e7 + 1.00e8i)T^{2} \)
43 \( 1 + (1.62e4 + 9.35e3i)T + (7.35e7 + 1.27e8i)T^{2} \)
47 \( 1 + (-1.38e3 + 802. i)T + (1.14e8 - 1.98e8i)T^{2} \)
53 \( 1 + (1.73e4 - 1.00e4i)T + (2.09e8 - 3.62e8i)T^{2} \)
59 \( 1 + (1.75e4 - 3.04e4i)T + (-3.57e8 - 6.19e8i)T^{2} \)
61 \( 1 + (-6.46e3 - 1.12e4i)T + (-4.22e8 + 7.31e8i)T^{2} \)
67 \( 1 + (2.56e3 + 4.44e3i)T + (-6.75e8 + 1.16e9i)T^{2} \)
71 \( 1 + (1.96e4 - 3.40e4i)T + (-9.02e8 - 1.56e9i)T^{2} \)
73 \( 1 + (-2.55e4 + 4.42e4i)T + (-1.03e9 - 1.79e9i)T^{2} \)
79 \( 1 + (-4.35e4 + 7.53e4i)T + (-1.53e9 - 2.66e9i)T^{2} \)
83 \( 1 + 3.29e4iT - 3.93e9T^{2} \)
89 \( 1 + (4.14e4 - 2.39e4i)T + (2.79e9 - 4.83e9i)T^{2} \)
97 \( 1 + (-7.77e4 - 4.48e4i)T + (4.29e9 + 7.43e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25451622997817308819417280226, −12.12515902915943667831157979327, −10.43999731332705939763841564252, −9.847138084496790035037645891729, −8.525754081852627573167063355504, −7.67836859502626097455264129093, −6.12311594813767336559102223521, −4.55789918879537439319295056372, −1.82647769705646910741316277981, −0.793258757442140814699668980834, 2.03076061249507322982952782838, 3.12479879831694866772414629581, 6.16352983024267528854717499020, 6.58689507976279701817536581656, 8.396883114499804250197437028153, 9.541282966153964197105933210128, 10.29881642798533508799115285866, 11.34733430313153091839120695832, 12.52023758466668350790375171838, 14.25937974758519204204482760907

Graph of the $Z$-function along the critical line