Properties

Label 6-76e3-1.1-c5e3-0-0
Degree $6$
Conductor $438976$
Sign $-1$
Analytic cond. $1811.01$
Root an. cond. $3.49129$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·3-s − 9·5-s − 13·7-s − 238·9-s − 1.22e3·11-s − 56·13-s + 72·15-s − 3.14e3·17-s + 1.08e3·19-s + 104·21-s − 3.21e3·23-s − 6.85e3·25-s − 1.13e3·27-s + 2.51e3·29-s − 1.07e4·31-s + 9.83e3·33-s + 117·35-s − 526·37-s + 448·39-s − 1.42e4·41-s − 77·43-s + 2.14e3·45-s + 2.89e3·47-s − 4.24e3·49-s + 2.51e4·51-s + 2.96e4·53-s + 1.10e4·55-s + ⋯
L(s)  = 1  − 0.513·3-s − 0.160·5-s − 0.100·7-s − 0.979·9-s − 3.06·11-s − 0.0919·13-s + 0.0826·15-s − 2.64·17-s + 0.688·19-s + 0.0514·21-s − 1.26·23-s − 2.19·25-s − 0.300·27-s + 0.555·29-s − 2.01·31-s + 1.57·33-s + 0.0161·35-s − 0.0631·37-s + 0.0471·39-s − 1.32·41-s − 0.00635·43-s + 0.157·45-s + 0.191·47-s − 0.252·49-s + 1.35·51-s + 1.44·53-s + 0.493·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 438976 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 438976 ^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(438976\)    =    \(2^{6} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(1811.01\)
Root analytic conductor: \(3.49129\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 438976,\ (\ :5/2, 5/2, 5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_1$ \( ( 1 - p^{2} T )^{3} \)
good3$S_4\times C_2$ \( 1 + 8 T + 302 T^{2} + 5458 T^{3} + 302 p^{5} T^{4} + 8 p^{10} T^{5} + p^{15} T^{6} \)
5$S_4\times C_2$ \( 1 + 9 T + 6939 T^{2} + 28026 T^{3} + 6939 p^{5} T^{4} + 9 p^{10} T^{5} + p^{15} T^{6} \)
7$S_4\times C_2$ \( 1 + 13 T + 4412 T^{2} + 4041265 T^{3} + 4412 p^{5} T^{4} + 13 p^{10} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 + 1229 T + 7341 p^{2} T^{2} + 426988730 T^{3} + 7341 p^{7} T^{4} + 1229 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 + 56 T + 753370 T^{2} + 113819548 T^{3} + 753370 p^{5} T^{4} + 56 p^{10} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 + 3149 T + 6698154 T^{2} + 542524789 p T^{3} + 6698154 p^{5} T^{4} + 3149 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 + 3212 T + 19502952 T^{2} + 38346818168 T^{3} + 19502952 p^{5} T^{4} + 3212 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 - 2514 T + 12293370 T^{2} + 25716500106 T^{3} + 12293370 p^{5} T^{4} - 2514 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 10784 T + 117438253 T^{2} + 634433161024 T^{3} + 117438253 p^{5} T^{4} + 10784 p^{10} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 + 526 T + 116708603 T^{2} - 99335908844 T^{3} + 116708603 p^{5} T^{4} + 526 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 + 14246 T + 250239387 T^{2} + 2879331741356 T^{3} + 250239387 p^{5} T^{4} + 14246 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 + 77 T + 202743301 T^{2} - 1376683552802 T^{3} + 202743301 p^{5} T^{4} + 77 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 - 2893 T + 359286261 T^{2} - 3082580772550 T^{3} + 359286261 p^{5} T^{4} - 2893 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 - 29600 T + 1222668138 T^{2} - 24185130249284 T^{3} + 1222668138 p^{5} T^{4} - 29600 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 2612 T + 617322774 T^{2} + 22206869633870 T^{3} + 617322774 p^{5} T^{4} + 2612 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 - 59895 T + 2524413243 T^{2} - 93178002577706 T^{3} + 2524413243 p^{5} T^{4} - 59895 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 + 3050 T + 3461359258 T^{2} + 13054487134240 T^{3} + 3461359258 p^{5} T^{4} + 3050 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 + 33562 T + 3038829777 T^{2} + 95755703148484 T^{3} + 3038829777 p^{5} T^{4} + 33562 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 - 44027 T + 5776409198 T^{2} - 168217478920607 T^{3} + 5776409198 p^{5} T^{4} - 44027 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 - 24944 T + 4909460729 T^{2} - 181217116721408 T^{3} + 4909460729 p^{5} T^{4} - 24944 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 + 220156 T + 26696171637 T^{2} + 2052928996726744 T^{3} + 26696171637 p^{5} T^{4} + 220156 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 116120 T + 238491987 p T^{2} + 1354049292978992 T^{3} + 238491987 p^{6} T^{4} + 116120 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 171204 T + 23943063687 T^{2} - 2932642007275304 T^{3} + 23943063687 p^{5} T^{4} - 171204 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95292118642495275925057520195, −12.11911966864014127424801663019, −11.66527034391703278286470417505, −11.65953545732759104859042460598, −11.09316595569251236483755001033, −10.80009719355585615529651391819, −10.48981904889747504786007646588, −10.10221716024744684974030874238, −9.483410043425175254590731700487, −9.431835493129785102545641249815, −8.481048622187917052280340443676, −8.254818892705068796098456842798, −8.184830358968739820784206487923, −7.41767806358796501544266206259, −7.15302093299404013312934218709, −6.66003968712249490115563145875, −5.79761018933897654858569282007, −5.55853273746225361020679339408, −5.49556214323443670311277829738, −4.77024339182396759190853673199, −4.11715965002197583915636724112, −3.63959709460520848859669032028, −2.69098048023036938534309571596, −2.36069605420336368656622047936, −1.88129794705445720294877520261, 0, 0, 0, 1.88129794705445720294877520261, 2.36069605420336368656622047936, 2.69098048023036938534309571596, 3.63959709460520848859669032028, 4.11715965002197583915636724112, 4.77024339182396759190853673199, 5.49556214323443670311277829738, 5.55853273746225361020679339408, 5.79761018933897654858569282007, 6.66003968712249490115563145875, 7.15302093299404013312934218709, 7.41767806358796501544266206259, 8.184830358968739820784206487923, 8.254818892705068796098456842798, 8.481048622187917052280340443676, 9.431835493129785102545641249815, 9.483410043425175254590731700487, 10.10221716024744684974030874238, 10.48981904889747504786007646588, 10.80009719355585615529651391819, 11.09316595569251236483755001033, 11.65953545732759104859042460598, 11.66527034391703278286470417505, 12.11911966864014127424801663019, 12.95292118642495275925057520195

Graph of the $Z$-function along the critical line