Properties

Label 2-76-19.10-c4-0-1
Degree $2$
Conductor $76$
Sign $-0.907 - 0.420i$
Analytic cond. $7.85611$
Root an. cond. $2.80287$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (10.9 + 13.1i)3-s + (−41.8 − 15.2i)5-s + (−26.2 + 45.5i)7-s + (−36.7 + 208. i)9-s + (−55.1 − 95.5i)11-s + (31.8 − 37.9i)13-s + (−260. − 716. i)15-s + (62.4 + 354. i)17-s + (346. + 100. i)19-s + (−885. + 156. i)21-s + (−253. + 92.2i)23-s + (1.04e3 + 875. i)25-s + (−1.93e3 + 1.11e3i)27-s + (−563. − 99.3i)29-s + (910. + 525. i)31-s + ⋯
L(s)  = 1  + (1.22 + 1.45i)3-s + (−1.67 − 0.609i)5-s + (−0.536 + 0.928i)7-s + (−0.454 + 2.57i)9-s + (−0.455 − 0.789i)11-s + (0.188 − 0.224i)13-s + (−1.15 − 3.18i)15-s + (0.216 + 1.22i)17-s + (0.960 + 0.278i)19-s + (−2.00 + 0.354i)21-s + (−0.479 + 0.174i)23-s + (1.67 + 1.40i)25-s + (−2.65 + 1.53i)27-s + (−0.670 − 0.118i)29-s + (0.947 + 0.546i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.907 - 0.420i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.907 - 0.420i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76\)    =    \(2^{2} \cdot 19\)
Sign: $-0.907 - 0.420i$
Analytic conductor: \(7.85611\)
Root analytic conductor: \(2.80287\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{76} (29, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 76,\ (\ :2),\ -0.907 - 0.420i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.274683 + 1.24684i\)
\(L(\frac12)\) \(\approx\) \(0.274683 + 1.24684i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + (-346. - 100. i)T \)
good3 \( 1 + (-10.9 - 13.1i)T + (-14.0 + 79.7i)T^{2} \)
5 \( 1 + (41.8 + 15.2i)T + (478. + 401. i)T^{2} \)
7 \( 1 + (26.2 - 45.5i)T + (-1.20e3 - 2.07e3i)T^{2} \)
11 \( 1 + (55.1 + 95.5i)T + (-7.32e3 + 1.26e4i)T^{2} \)
13 \( 1 + (-31.8 + 37.9i)T + (-4.95e3 - 2.81e4i)T^{2} \)
17 \( 1 + (-62.4 - 354. i)T + (-7.84e4 + 2.85e4i)T^{2} \)
23 \( 1 + (253. - 92.2i)T + (2.14e5 - 1.79e5i)T^{2} \)
29 \( 1 + (563. + 99.3i)T + (6.64e5 + 2.41e5i)T^{2} \)
31 \( 1 + (-910. - 525. i)T + (4.61e5 + 7.99e5i)T^{2} \)
37 \( 1 - 527. iT - 1.87e6T^{2} \)
41 \( 1 + (-407. - 485. i)T + (-4.90e5 + 2.78e6i)T^{2} \)
43 \( 1 + (910. + 331. i)T + (2.61e6 + 2.19e6i)T^{2} \)
47 \( 1 + (22.9 - 130. i)T + (-4.58e6 - 1.66e6i)T^{2} \)
53 \( 1 + (203. + 558. i)T + (-6.04e6 + 5.07e6i)T^{2} \)
59 \( 1 + (-3.75e3 + 661. i)T + (1.13e7 - 4.14e6i)T^{2} \)
61 \( 1 + (-1.59e3 + 579. i)T + (1.06e7 - 8.89e6i)T^{2} \)
67 \( 1 + (-2.49e3 - 439. i)T + (1.89e7 + 6.89e6i)T^{2} \)
71 \( 1 + (-1.82e3 + 5.02e3i)T + (-1.94e7 - 1.63e7i)T^{2} \)
73 \( 1 + (-500. + 419. i)T + (4.93e6 - 2.79e7i)T^{2} \)
79 \( 1 + (53.2 + 63.4i)T + (-6.76e6 + 3.83e7i)T^{2} \)
83 \( 1 + (3.32e3 - 5.76e3i)T + (-2.37e7 - 4.11e7i)T^{2} \)
89 \( 1 + (-3.75e3 + 4.47e3i)T + (-1.08e7 - 6.17e7i)T^{2} \)
97 \( 1 + (1.42e4 - 2.50e3i)T + (8.31e7 - 3.02e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.62275011930843334476801184088, −13.24793145424029980221934685147, −11.97134761175377282653214772922, −10.79204165016851341464400036299, −9.536243850471069217059952663189, −8.410630484739021715139885334327, −8.050219036601814330113364256103, −5.33647417514499620562513131876, −3.92979211386820825047526213536, −3.12080936508121241949160742968, 0.56819780491625099908756089615, 2.79434061490788684389114294930, 3.89901175396619903667826060180, 6.97905395342475437858157649020, 7.31351120122376137678790815871, 8.201168292422202187284544492775, 9.717241586111556398804162336640, 11.46720406936709270609475702389, 12.31004085278450161366971804698, 13.38878851590591423536143639102

Graph of the $Z$-function along the critical line