Properties

Label 2-76-19.5-c3-0-3
Degree $2$
Conductor $76$
Sign $-0.354 + 0.934i$
Analytic cond. $4.48414$
Root an. cond. $2.11758$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.580 + 3.29i)3-s + (−11.9 − 9.99i)5-s + (−13.7 − 23.8i)7-s + (14.8 + 5.41i)9-s + (17.2 − 29.9i)11-s + (−3.57 − 20.2i)13-s + (39.7 − 33.3i)15-s + (−102. + 37.2i)17-s + (−76.2 − 32.3i)19-s + (86.4 − 31.4i)21-s + (−12.9 + 10.8i)23-s + (20.2 + 114. i)25-s + (−71.5 + 123. i)27-s + (232. + 84.6i)29-s + (−136. − 235. i)31-s + ⋯
L(s)  = 1  + (−0.111 + 0.633i)3-s + (−1.06 − 0.893i)5-s + (−0.743 − 1.28i)7-s + (0.551 + 0.200i)9-s + (0.473 − 0.820i)11-s + (−0.0763 − 0.432i)13-s + (0.684 − 0.574i)15-s + (−1.45 + 0.531i)17-s + (−0.920 − 0.391i)19-s + (0.898 − 0.326i)21-s + (−0.117 + 0.0987i)23-s + (0.161 + 0.918i)25-s + (−0.510 + 0.883i)27-s + (1.48 + 0.541i)29-s + (−0.788 − 1.36i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.354 + 0.934i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.354 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76\)    =    \(2^{2} \cdot 19\)
Sign: $-0.354 + 0.934i$
Analytic conductor: \(4.48414\)
Root analytic conductor: \(2.11758\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{76} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 76,\ (\ :3/2),\ -0.354 + 0.934i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.421141 - 0.610374i\)
\(L(\frac12)\) \(\approx\) \(0.421141 - 0.610374i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + (76.2 + 32.3i)T \)
good3 \( 1 + (0.580 - 3.29i)T + (-25.3 - 9.23i)T^{2} \)
5 \( 1 + (11.9 + 9.99i)T + (21.7 + 123. i)T^{2} \)
7 \( 1 + (13.7 + 23.8i)T + (-171.5 + 297. i)T^{2} \)
11 \( 1 + (-17.2 + 29.9i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (3.57 + 20.2i)T + (-2.06e3 + 751. i)T^{2} \)
17 \( 1 + (102. - 37.2i)T + (3.76e3 - 3.15e3i)T^{2} \)
23 \( 1 + (12.9 - 10.8i)T + (2.11e3 - 1.19e4i)T^{2} \)
29 \( 1 + (-232. - 84.6i)T + (1.86e4 + 1.56e4i)T^{2} \)
31 \( 1 + (136. + 235. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 - 340.T + 5.06e4T^{2} \)
41 \( 1 + (-3.48 + 19.7i)T + (-6.47e4 - 2.35e4i)T^{2} \)
43 \( 1 + (61.2 + 51.4i)T + (1.38e4 + 7.82e4i)T^{2} \)
47 \( 1 + (-14.3 - 5.23i)T + (7.95e4 + 6.67e4i)T^{2} \)
53 \( 1 + (235. - 198. i)T + (2.58e4 - 1.46e5i)T^{2} \)
59 \( 1 + (-605. + 220. i)T + (1.57e5 - 1.32e5i)T^{2} \)
61 \( 1 + (-366. + 307. i)T + (3.94e4 - 2.23e5i)T^{2} \)
67 \( 1 + (-90.9 - 33.1i)T + (2.30e5 + 1.93e5i)T^{2} \)
71 \( 1 + (312. + 261. i)T + (6.21e4 + 3.52e5i)T^{2} \)
73 \( 1 + (-151. + 861. i)T + (-3.65e5 - 1.33e5i)T^{2} \)
79 \( 1 + (-120. + 682. i)T + (-4.63e5 - 1.68e5i)T^{2} \)
83 \( 1 + (225. + 390. i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 + (-131. - 744. i)T + (-6.62e5 + 2.41e5i)T^{2} \)
97 \( 1 + (314. - 114. i)T + (6.99e5 - 5.86e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39850988849194699905543322086, −12.78830738807403169682614313773, −11.27411315491990291049228044929, −10.45118612942002696601560916834, −9.133887311171721234061466278967, −7.951154224367614487980198892195, −6.58266846638391932280825061681, −4.51488146588137490508030350138, −3.85112403285144590173660406094, −0.47480089829084692003529168505, 2.44949062175615502322889796649, 4.22908000635638502120227942219, 6.47015133560863919382015575475, 7.02825054197731875924717644396, 8.561883491817052628319484076098, 9.842452204313377926160153529229, 11.36580410390222610806486293457, 12.18038603384757706169460444565, 12.94617519327376112561249519062, 14.55867165019320270484467296690

Graph of the $Z$-function along the critical line