Properties

Label 8-756e4-1.1-c1e4-0-7
Degree $8$
Conductor $326653399296$
Sign $1$
Analytic cond. $1327.99$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 14·19-s − 6·31-s + 8·37-s + 20·43-s − 11·49-s + 6·61-s − 20·67-s + 10·73-s − 24·79-s − 20·97-s − 4·103-s − 14·109-s − 18·121-s + 127-s + 131-s + 28·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 52·169-s + 173-s + 179-s + ⋯
L(s)  = 1  + 0.755·7-s + 3.21·19-s − 1.07·31-s + 1.31·37-s + 3.04·43-s − 1.57·49-s + 0.768·61-s − 2.44·67-s + 1.17·73-s − 2.70·79-s − 2.03·97-s − 0.394·103-s − 1.34·109-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 2.42·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1327.99\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{12} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.803939831\)
\(L(\frac12)\) \(\approx\) \(3.803939831\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
good5$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
11$C_2^3$ \( 1 + 18 T^{2} + 203 T^{4} + 18 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2^3$ \( 1 - 24 T^{2} + 287 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + T + p T^{2} )^{2} \)
23$C_2^3$ \( 1 - 36 T^{2} + 767 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 48 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 3 T - 22 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 4 T - 21 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \)
47$C_2^3$ \( 1 - 4 T^{2} - 2193 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 - 16 T^{2} - 2553 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^3$ \( 1 + 42 T^{2} - 1717 T^{4} + 42 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 3 T - 52 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 10 T + 33 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 5 T - 48 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 12 T + 65 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 126 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^3$ \( 1 - 88 T^{2} - 177 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43670066713073198658901004969, −7.34219447592412128936471237106, −6.96243514482671641660078505422, −6.79424738633053806223789997352, −6.74180495241961951572975876537, −6.07446430343482198848618268123, −5.88164196817968200826309463182, −5.78719686531878836303649301820, −5.52817429289512831921921649265, −5.50777035672276479235371154492, −5.04660747963882135909051330952, −4.71810395129548834197003327002, −4.60682683621401214865326235609, −4.35121478697173678711743405307, −3.98728877621667091530523756105, −3.77315166425405347126678405918, −3.44250531904788190475577079798, −2.93625720098955296498880892687, −2.85667905731729881285241079692, −2.81923699543565944240662170460, −2.12496372588200648486040085856, −1.71683730666216784679185480171, −1.46666538950011298566897024351, −1.01078842271763297194305842871, −0.58959884735531724501078841954, 0.58959884735531724501078841954, 1.01078842271763297194305842871, 1.46666538950011298566897024351, 1.71683730666216784679185480171, 2.12496372588200648486040085856, 2.81923699543565944240662170460, 2.85667905731729881285241079692, 2.93625720098955296498880892687, 3.44250531904788190475577079798, 3.77315166425405347126678405918, 3.98728877621667091530523756105, 4.35121478697173678711743405307, 4.60682683621401214865326235609, 4.71810395129548834197003327002, 5.04660747963882135909051330952, 5.50777035672276479235371154492, 5.52817429289512831921921649265, 5.78719686531878836303649301820, 5.88164196817968200826309463182, 6.07446430343482198848618268123, 6.74180495241961951572975876537, 6.79424738633053806223789997352, 6.96243514482671641660078505422, 7.34219447592412128936471237106, 7.43670066713073198658901004969

Graph of the $Z$-function along the critical line