Properties

Label 8-756e4-1.1-c1e4-0-4
Degree $8$
Conductor $326653399296$
Sign $1$
Analytic cond. $1327.99$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 8·7-s − 4·13-s − 24·19-s − 2·25-s + 16·28-s + 18·31-s − 10·37-s + 34·49-s − 8·52-s − 10·61-s − 8·64-s − 18·67-s + 8·73-s − 48·76-s + 54·79-s − 32·91-s + 20·97-s − 4·100-s − 66·103-s − 10·109-s + 16·121-s + 36·124-s + 127-s + 131-s − 192·133-s + 137-s + ⋯
L(s)  = 1  + 4-s + 3.02·7-s − 1.10·13-s − 5.50·19-s − 2/5·25-s + 3.02·28-s + 3.23·31-s − 1.64·37-s + 34/7·49-s − 1.10·52-s − 1.28·61-s − 64-s − 2.19·67-s + 0.936·73-s − 5.50·76-s + 6.07·79-s − 3.35·91-s + 2.03·97-s − 2/5·100-s − 6.50·103-s − 0.957·109-s + 1.45·121-s + 3.23·124-s + 0.0887·127-s + 0.0873·131-s − 16.6·133-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1327.99\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{12} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.340653820\)
\(L(\frac12)\) \(\approx\) \(2.340653820\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
3 \( 1 \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
good5$C_2^3$ \( 1 + 2 T^{2} - 21 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^3$ \( 1 - 16 T^{2} + 135 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
17$C_2^3$ \( 1 + 32 T^{2} + 735 T^{4} + 32 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 + 12 T + 67 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 40 T^{2} + 1071 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 9 T + 58 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 5 T - 12 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 11 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 40 T^{2} - 609 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 + 8 T^{2} - 2745 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^3$ \( 1 - 64 T^{2} + 615 T^{4} - 64 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 5 T - 36 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 9 T + 94 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 4 T - 57 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 27 T + 322 T^{2} - 27 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 160 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^3$ \( 1 - 22 T^{2} - 7437 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41495048524130528321451149864, −7.37194429315091087273786319201, −6.85989308012128109816603319964, −6.69780343680384688445501847075, −6.41858843830476645926202456543, −6.40737324513263614389378452278, −6.10135545036570177256444295609, −6.05781893055791417857907078663, −5.34704237082687644252322526549, −5.28910024430568593916717361355, −4.82747982749890365010129406874, −4.78169438523338396859991499185, −4.66363814745521245174760764577, −4.37641131665095971290970142678, −4.15915654330043235504265386105, −3.75970529978984459081468942899, −3.70103048999557360350019652362, −2.80430896274493800829682705507, −2.70691930239356925345995585184, −2.20622813798906800871787650865, −2.20251551888517151591779252145, −2.08954098240571840670828489821, −1.44429986447717910854686598759, −1.39801941983347366595440800093, −0.34629666063667590324780779153, 0.34629666063667590324780779153, 1.39801941983347366595440800093, 1.44429986447717910854686598759, 2.08954098240571840670828489821, 2.20251551888517151591779252145, 2.20622813798906800871787650865, 2.70691930239356925345995585184, 2.80430896274493800829682705507, 3.70103048999557360350019652362, 3.75970529978984459081468942899, 4.15915654330043235504265386105, 4.37641131665095971290970142678, 4.66363814745521245174760764577, 4.78169438523338396859991499185, 4.82747982749890365010129406874, 5.28910024430568593916717361355, 5.34704237082687644252322526549, 6.05781893055791417857907078663, 6.10135545036570177256444295609, 6.40737324513263614389378452278, 6.41858843830476645926202456543, 6.69780343680384688445501847075, 6.85989308012128109816603319964, 7.37194429315091087273786319201, 7.41495048524130528321451149864

Graph of the $Z$-function along the critical line