Properties

Degree 2
Conductor $ 2^{2} \cdot 3^{2} \cdot 11 \cdot 19 $
Sign $i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3.31i·11-s − 7.15·13-s + 8.19i·17-s − 4.35·19-s − 5·25-s + 7·49-s − 5.72i·53-s − 11.7i·59-s + 0.271i·71-s + 12.7·79-s − 14.8i·83-s − 17.7i·89-s − 13.2i·101-s + 17.4·109-s + 6.27i·113-s + ⋯
L(s)  = 1  + 1.00i·11-s − 1.98·13-s + 1.98i·17-s − 1.00·19-s − 25-s + 49-s − 0.786i·53-s − 1.52i·59-s + 0.0322i·71-s + 1.43·79-s − 1.62i·83-s − 1.87i·89-s − 1.32i·101-s + 1.67·109-s + 0.589i·113-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 7524 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 7524 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(7524\)    =    \(2^{2} \cdot 3^{2} \cdot 11 \cdot 19\)
\( \varepsilon \)  =  $i$
motivic weight  =  \(1\)
character  :  $\chi_{7524} (2089, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 7524,\ (\ :1/2),\ i)$
$L(1)$  $\approx$  $0.5074676483$
$L(\frac12)$  $\approx$  $0.5074676483$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;11,\;19\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{2,\;3,\;11,\;19\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - 3.31iT \)
19 \( 1 + 4.35T \)
good5 \( 1 + 5T^{2} \)
7 \( 1 - 7T^{2} \)
13 \( 1 + 7.15T + 13T^{2} \)
17 \( 1 - 8.19iT - 17T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 5.72iT - 53T^{2} \)
59 \( 1 + 11.7iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 - 0.271iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 12.7T + 79T^{2} \)
83 \( 1 + 14.8iT - 83T^{2} \)
89 \( 1 + 17.7iT - 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.69134769375573005604325875534, −7.08319194477117176343317431110, −6.35467065869593966519331845934, −5.64394553341733118307269293040, −4.73454924857961062174490970101, −4.28015134027379989357709853376, −3.39657232461308309903623292875, −2.12940650971654575009921013153, −1.93017960363261647183386561467, −0.14694924778403813915291489496, 0.793693308409649463217673520114, 2.33795129951428205460981606912, 2.67688571323049050710653110020, 3.75038006020192462164685632467, 4.62725052403952637073409562087, 5.20514749607580846545961337502, 5.90822971973235372907942822747, 6.79873181681668687978814341652, 7.38405145193390019456276758844, 7.916398398972334653878316954348

Graph of the $Z$-function along the critical line