Properties

Label 20-75e10-1.1-c8e10-0-1
Degree $20$
Conductor $5.631\times 10^{18}$
Sign $1$
Analytic cond. $7.08916\times 10^{14}$
Root an. cond. $5.52751$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 25·3-s + 503·4-s − 1.96e3·7-s − 5.29e3·9-s + 1.25e4·12-s + 1.69e4·13-s + 3.82e4·16-s − 1.43e5·19-s − 4.90e4·21-s − 5.05e4·27-s − 9.85e5·28-s − 3.01e6·31-s − 2.66e6·36-s − 3.01e6·37-s + 4.23e5·39-s − 1.17e7·43-s + 9.55e5·48-s − 2.24e7·49-s + 8.51e6·52-s − 3.59e6·57-s + 1.52e6·61-s + 1.03e7·63-s − 2.20e7·64-s + 1.62e7·67-s + 5.20e7·73-s − 7.23e7·76-s + 8.54e6·79-s + ⋯
L(s)  = 1  + 0.308·3-s + 1.96·4-s − 0.816·7-s − 0.806·9-s + 0.606·12-s + 0.592·13-s + 0.582·16-s − 1.10·19-s − 0.251·21-s − 0.0950·27-s − 1.60·28-s − 3.26·31-s − 1.58·36-s − 1.60·37-s + 0.182·39-s − 3.43·43-s + 0.179·48-s − 3.89·49-s + 1.16·52-s − 0.340·57-s + 0.109·61-s + 0.658·63-s − 1.31·64-s + 0.807·67-s + 1.83·73-s − 2.17·76-s + 0.219·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 5^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(9-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 5^{20}\right)^{s/2} \, \Gamma_{\C}(s+4)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(3^{10} \cdot 5^{20}\)
Sign: $1$
Analytic conductor: \(7.08916\times 10^{14}\)
Root analytic conductor: \(5.52751\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 3^{10} \cdot 5^{20} ,\ ( \ : [4]^{10} ),\ 1 )\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.804183252\)
\(L(\frac12)\) \(\approx\) \(1.804183252\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 25 T + 1972 p T^{2} - 35 p^{8} T^{3} + 19187 p^{6} T^{4} - 1761160 p^{7} T^{5} + 19187 p^{14} T^{6} - 35 p^{24} T^{7} + 1972 p^{25} T^{8} - 25 p^{32} T^{9} + p^{40} T^{10} \)
5 \( 1 \)
good2 \( 1 - 503 T^{2} + 107401 p T^{4} - 2086639 p^{5} T^{6} + 138411569 p^{7} T^{8} - 152456901 p^{15} T^{10} + 138411569 p^{23} T^{12} - 2086639 p^{37} T^{14} + 107401 p^{49} T^{16} - 503 p^{64} T^{18} + p^{80} T^{20} \)
7 \( ( 1 + 20 p^{2} T + 1807688 p T^{2} + 605153480 p^{2} T^{3} + 178140304501 p^{3} T^{4} + 115043780623080 p^{4} T^{5} + 178140304501 p^{11} T^{6} + 605153480 p^{18} T^{7} + 1807688 p^{25} T^{8} + 20 p^{34} T^{9} + p^{40} T^{10} )^{2} \)
11 \( 1 - 192340745 T^{2} + 148881111120899000 T^{4} - \)\(33\!\cdots\!75\)\( T^{6} + \)\(10\!\cdots\!95\)\( T^{8} - \)\(22\!\cdots\!52\)\( T^{10} + \)\(10\!\cdots\!95\)\( p^{16} T^{12} - \)\(33\!\cdots\!75\)\( p^{32} T^{14} + 148881111120899000 p^{48} T^{16} - 192340745 p^{64} T^{18} + p^{80} T^{20} \)
13 \( ( 1 - 8460 T + 2061295726 T^{2} - 19630735647410 T^{3} + 2703420250858988833 T^{4} - \)\(21\!\cdots\!00\)\( T^{5} + 2703420250858988833 p^{8} T^{6} - 19630735647410 p^{16} T^{7} + 2061295726 p^{24} T^{8} - 8460 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
17 \( 1 - 24622202753 T^{2} + \)\(30\!\cdots\!72\)\( T^{4} - \)\(26\!\cdots\!23\)\( T^{6} + \)\(21\!\cdots\!07\)\( T^{8} - \)\(15\!\cdots\!08\)\( T^{10} + \)\(21\!\cdots\!07\)\( p^{16} T^{12} - \)\(26\!\cdots\!23\)\( p^{32} T^{14} + \)\(30\!\cdots\!72\)\( p^{48} T^{16} - 24622202753 p^{64} T^{18} + p^{80} T^{20} \)
19 \( ( 1 + 71967 T + 50409342607 T^{2} + 4310541913802 p^{2} T^{3} + \)\(11\!\cdots\!57\)\( T^{4} + \)\(16\!\cdots\!17\)\( T^{5} + \)\(11\!\cdots\!57\)\( p^{8} T^{6} + 4310541913802 p^{18} T^{7} + 50409342607 p^{24} T^{8} + 71967 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
23 \( 1 - 502916724718 T^{2} + \)\(12\!\cdots\!77\)\( T^{4} - \)\(20\!\cdots\!88\)\( T^{6} + \)\(24\!\cdots\!82\)\( T^{8} - \)\(21\!\cdots\!08\)\( T^{10} + \)\(24\!\cdots\!82\)\( p^{16} T^{12} - \)\(20\!\cdots\!88\)\( p^{32} T^{14} + \)\(12\!\cdots\!77\)\( p^{48} T^{16} - 502916724718 p^{64} T^{18} + p^{80} T^{20} \)
29 \( 1 - 2741150439950 T^{2} + \)\(40\!\cdots\!65\)\( T^{4} - \)\(40\!\cdots\!40\)\( T^{6} + \)\(30\!\cdots\!50\)\( T^{8} - \)\(17\!\cdots\!52\)\( T^{10} + \)\(30\!\cdots\!50\)\( p^{16} T^{12} - \)\(40\!\cdots\!40\)\( p^{32} T^{14} + \)\(40\!\cdots\!65\)\( p^{48} T^{16} - 2741150439950 p^{64} T^{18} + p^{80} T^{20} \)
31 \( ( 1 + 1507030 T + 4095821792900 T^{2} + 4409014857553613950 T^{3} + \)\(67\!\cdots\!95\)\( T^{4} + \)\(53\!\cdots\!48\)\( T^{5} + \)\(67\!\cdots\!95\)\( p^{8} T^{6} + 4409014857553613950 p^{16} T^{7} + 4095821792900 p^{24} T^{8} + 1507030 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
37 \( ( 1 + 1508380 T + 10316940851001 T^{2} + 10554349546069507440 T^{3} + \)\(44\!\cdots\!58\)\( T^{4} + \)\(37\!\cdots\!20\)\( T^{5} + \)\(44\!\cdots\!58\)\( p^{8} T^{6} + 10554349546069507440 p^{16} T^{7} + 10316940851001 p^{24} T^{8} + 1508380 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
41 \( 1 - 41649195595145 T^{2} + \)\(90\!\cdots\!00\)\( T^{4} - \)\(13\!\cdots\!75\)\( T^{6} + \)\(15\!\cdots\!95\)\( T^{8} - \)\(14\!\cdots\!52\)\( T^{10} + \)\(15\!\cdots\!95\)\( p^{16} T^{12} - \)\(13\!\cdots\!75\)\( p^{32} T^{14} + \)\(90\!\cdots\!00\)\( p^{48} T^{16} - 41649195595145 p^{64} T^{18} + p^{80} T^{20} \)
43 \( ( 1 + 5873670 T + 55623037219636 T^{2} + \)\(23\!\cdots\!30\)\( T^{3} + \)\(12\!\cdots\!03\)\( T^{4} + \)\(38\!\cdots\!20\)\( T^{5} + \)\(12\!\cdots\!03\)\( p^{8} T^{6} + \)\(23\!\cdots\!30\)\( p^{16} T^{7} + 55623037219636 p^{24} T^{8} + 5873670 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
47 \( 1 - 94478339945798 T^{2} + \)\(45\!\cdots\!77\)\( T^{4} - \)\(14\!\cdots\!88\)\( T^{6} + \)\(35\!\cdots\!42\)\( T^{8} - \)\(82\!\cdots\!68\)\( T^{10} + \)\(35\!\cdots\!42\)\( p^{16} T^{12} - \)\(14\!\cdots\!88\)\( p^{32} T^{14} + \)\(45\!\cdots\!77\)\( p^{48} T^{16} - 94478339945798 p^{64} T^{18} + p^{80} T^{20} \)
53 \( 1 - 314820558259598 T^{2} + \)\(51\!\cdots\!77\)\( T^{4} - \)\(10\!\cdots\!96\)\( p T^{6} + \)\(44\!\cdots\!42\)\( T^{8} - \)\(30\!\cdots\!68\)\( T^{10} + \)\(44\!\cdots\!42\)\( p^{16} T^{12} - \)\(10\!\cdots\!96\)\( p^{33} T^{14} + \)\(51\!\cdots\!77\)\( p^{48} T^{16} - 314820558259598 p^{64} T^{18} + p^{80} T^{20} \)
59 \( 1 - 543628475970170 T^{2} + \)\(20\!\cdots\!25\)\( T^{4} - \)\(54\!\cdots\!00\)\( T^{6} + \)\(11\!\cdots\!70\)\( T^{8} - \)\(18\!\cdots\!52\)\( T^{10} + \)\(11\!\cdots\!70\)\( p^{16} T^{12} - \)\(54\!\cdots\!00\)\( p^{32} T^{14} + \)\(20\!\cdots\!25\)\( p^{48} T^{16} - 543628475970170 p^{64} T^{18} + p^{80} T^{20} \)
61 \( ( 1 - 760110 T + 696303715647670 T^{2} - \)\(12\!\cdots\!20\)\( T^{3} + \)\(22\!\cdots\!85\)\( T^{4} - \)\(38\!\cdots\!52\)\( T^{5} + \)\(22\!\cdots\!85\)\( p^{8} T^{6} - \)\(12\!\cdots\!20\)\( p^{16} T^{7} + 696303715647670 p^{24} T^{8} - 760110 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
67 \( ( 1 - 8134645 T + 1108061463006911 T^{2} - \)\(13\!\cdots\!90\)\( T^{3} + \)\(75\!\cdots\!73\)\( T^{4} - \)\(67\!\cdots\!15\)\( T^{5} + \)\(75\!\cdots\!73\)\( p^{8} T^{6} - \)\(13\!\cdots\!90\)\( p^{16} T^{7} + 1108061463006911 p^{24} T^{8} - 8134645 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
71 \( 1 - 2732196231020750 T^{2} + \)\(39\!\cdots\!65\)\( T^{4} - \)\(41\!\cdots\!40\)\( T^{6} + \)\(36\!\cdots\!50\)\( T^{8} - \)\(25\!\cdots\!52\)\( T^{10} + \)\(36\!\cdots\!50\)\( p^{16} T^{12} - \)\(41\!\cdots\!40\)\( p^{32} T^{14} + \)\(39\!\cdots\!65\)\( p^{48} T^{16} - 2732196231020750 p^{64} T^{18} + p^{80} T^{20} \)
73 \( ( 1 - 26045085 T + 18917014698616 T^{2} + \)\(27\!\cdots\!05\)\( T^{3} + \)\(59\!\cdots\!83\)\( T^{4} - \)\(32\!\cdots\!20\)\( T^{5} + \)\(59\!\cdots\!83\)\( p^{8} T^{6} + \)\(27\!\cdots\!05\)\( p^{16} T^{7} + 18917014698616 p^{24} T^{8} - 26045085 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
79 \( ( 1 - 4274948 T + 4956420190243457 T^{2} - \)\(17\!\cdots\!08\)\( T^{3} + \)\(12\!\cdots\!02\)\( T^{4} - \)\(32\!\cdots\!08\)\( T^{5} + \)\(12\!\cdots\!02\)\( p^{8} T^{6} - \)\(17\!\cdots\!08\)\( p^{16} T^{7} + 4956420190243457 p^{24} T^{8} - 4274948 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
83 \( 1 - 11035625920352113 T^{2} + \)\(66\!\cdots\!72\)\( T^{4} - \)\(27\!\cdots\!83\)\( T^{6} + \)\(87\!\cdots\!07\)\( T^{8} - \)\(21\!\cdots\!68\)\( T^{10} + \)\(87\!\cdots\!07\)\( p^{16} T^{12} - \)\(27\!\cdots\!83\)\( p^{32} T^{14} + \)\(66\!\cdots\!72\)\( p^{48} T^{16} - 11035625920352113 p^{64} T^{18} + p^{80} T^{20} \)
89 \( 1 - 21967942241494945 T^{2} + \)\(22\!\cdots\!00\)\( T^{4} - \)\(13\!\cdots\!75\)\( T^{6} + \)\(64\!\cdots\!95\)\( T^{8} - \)\(26\!\cdots\!52\)\( T^{10} + \)\(64\!\cdots\!95\)\( p^{16} T^{12} - \)\(13\!\cdots\!75\)\( p^{32} T^{14} + \)\(22\!\cdots\!00\)\( p^{48} T^{16} - 21967942241494945 p^{64} T^{18} + p^{80} T^{20} \)
97 \( ( 1 - 201083900 T + 45058329689335806 T^{2} - \)\(58\!\cdots\!90\)\( T^{3} + \)\(74\!\cdots\!93\)\( T^{4} - \)\(66\!\cdots\!80\)\( T^{5} + \)\(74\!\cdots\!93\)\( p^{8} T^{6} - \)\(58\!\cdots\!90\)\( p^{16} T^{7} + 45058329689335806 p^{24} T^{8} - 201083900 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.30235591554057914210862043349, −3.79454320040743435147952472864, −3.62139701994354469031339335486, −3.49144950422100285509492603347, −3.44544693627890888442565112772, −3.43512913205131528841713850350, −3.13644420483490294925533880737, −3.08651729851563801221615894075, −3.03434458691381823941199012528, −3.01120167836475632409913428985, −2.40154493689585325778227554911, −2.22676871069643246577506390675, −2.09846209206546511926515277591, −1.94296137678566180303261440217, −1.91892513911487202599344174671, −1.84755634522310508657643014811, −1.84206930308751725278704436031, −1.69748173813427837275796391554, −1.25243919009494480060137379185, −0.902568153977889926325433794099, −0.72698544528957447495255407896, −0.68577879199553175308852857589, −0.49689369784829477081516908870, −0.17313488402755529894851595706, −0.11336215254886997345261706357, 0.11336215254886997345261706357, 0.17313488402755529894851595706, 0.49689369784829477081516908870, 0.68577879199553175308852857589, 0.72698544528957447495255407896, 0.902568153977889926325433794099, 1.25243919009494480060137379185, 1.69748173813427837275796391554, 1.84206930308751725278704436031, 1.84755634522310508657643014811, 1.91892513911487202599344174671, 1.94296137678566180303261440217, 2.09846209206546511926515277591, 2.22676871069643246577506390675, 2.40154493689585325778227554911, 3.01120167836475632409913428985, 3.03434458691381823941199012528, 3.08651729851563801221615894075, 3.13644420483490294925533880737, 3.43512913205131528841713850350, 3.44544693627890888442565112772, 3.49144950422100285509492603347, 3.62139701994354469031339335486, 3.79454320040743435147952472864, 4.30235591554057914210862043349

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.