Properties

Label 2-75-3.2-c8-0-28
Degree $2$
Conductor $75$
Sign $1$
Analytic cond. $30.5533$
Root an. cond. $5.52751$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 81·3-s + 256·4-s − 4.27e3·7-s + 6.56e3·9-s + 2.07e4·12-s + 5.64e4·13-s + 6.55e4·16-s + 1.57e5·19-s − 3.46e5·21-s + 5.31e5·27-s − 1.09e6·28-s + 1.22e6·31-s + 1.67e6·36-s + 5.03e5·37-s + 4.57e6·39-s − 6.83e6·43-s + 5.30e6·48-s + 1.24e7·49-s + 1.44e7·52-s + 1.27e7·57-s − 3.07e5·61-s − 2.80e7·63-s + 1.67e7·64-s − 3.18e7·67-s + 1.61e7·73-s + 4.04e7·76-s − 1.88e7·79-s + ⋯
L(s)  = 1  + 3-s + 4-s − 1.77·7-s + 9-s + 12-s + 1.97·13-s + 16-s + 1.21·19-s − 1.77·21-s + 27-s − 1.77·28-s + 1.32·31-s + 36-s + 0.268·37-s + 1.97·39-s − 1.99·43-s + 48-s + 2.16·49-s + 1.97·52-s + 1.21·57-s − 0.0222·61-s − 1.77·63-s + 64-s − 1.58·67-s + 0.569·73-s + 1.21·76-s − 0.484·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(30.5533\)
Root analytic conductor: \(5.52751\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: $\chi_{75} (26, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(3.486960799\)
\(L(\frac12)\) \(\approx\) \(3.486960799\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p^{4} T \)
5 \( 1 \)
good2 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
7 \( 1 + 4273 T + p^{8} T^{2} \)
11 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
13 \( 1 - 56447 T + p^{8} T^{2} \)
17 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
19 \( 1 - 157967 T + p^{8} T^{2} \)
23 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
29 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
31 \( 1 - 1225967 T + p^{8} T^{2} \)
37 \( 1 - 503522 T + p^{8} T^{2} \)
41 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
43 \( 1 + 6837073 T + p^{8} T^{2} \)
47 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
53 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
59 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
61 \( 1 + 307393 T + p^{8} T^{2} \)
67 \( 1 + 31874833 T + p^{8} T^{2} \)
71 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
73 \( 1 - 16169282 T + p^{8} T^{2} \)
79 \( 1 + 18887038 T + p^{8} T^{2} \)
83 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
89 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
97 \( 1 + 82132513 T + p^{8} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10368534062724313031218917458, −11.87076508162835495263786450608, −10.45319324531572178617099602809, −9.532425441090826873081563122439, −8.293713484670541055044943434365, −6.93611703548972549857329832836, −6.10739035442041023086301816218, −3.59241772594880276912088752269, −2.91858936740506823629779242143, −1.22893331001653833683548088976, 1.22893331001653833683548088976, 2.91858936740506823629779242143, 3.59241772594880276912088752269, 6.10739035442041023086301816218, 6.93611703548972549857329832836, 8.293713484670541055044943434365, 9.532425441090826873081563122439, 10.45319324531572178617099602809, 11.87076508162835495263786450608, 13.10368534062724313031218917458

Graph of the $Z$-function along the critical line