Properties

Label 2-75-3.2-c6-0-24
Degree $2$
Conductor $75$
Sign $1$
Analytic cond. $17.2540$
Root an. cond. $4.15380$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s + 64·4-s + 286·7-s + 729·9-s + 1.72e3·12-s − 506·13-s + 4.09e3·16-s − 1.05e4·19-s + 7.72e3·21-s + 1.96e4·27-s + 1.83e4·28-s + 3.52e4·31-s + 4.66e4·36-s + 8.92e4·37-s − 1.36e4·39-s − 1.11e5·43-s + 1.10e5·48-s − 3.58e4·49-s − 3.23e4·52-s − 2.85e5·57-s − 4.20e5·61-s + 2.08e5·63-s + 2.62e5·64-s − 1.72e5·67-s − 6.38e5·73-s − 6.77e5·76-s − 2.04e5·79-s + ⋯
L(s)  = 1  + 3-s + 4-s + 0.833·7-s + 9-s + 12-s − 0.230·13-s + 16-s − 1.54·19-s + 0.833·21-s + 27-s + 0.833·28-s + 1.18·31-s + 36-s + 1.76·37-s − 0.230·39-s − 1.40·43-s + 48-s − 0.304·49-s − 0.230·52-s − 1.54·57-s − 1.85·61-s + 0.833·63-s + 64-s − 0.574·67-s − 1.64·73-s − 1.54·76-s − 0.415·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(17.2540\)
Root analytic conductor: \(4.15380\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: $\chi_{75} (26, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(3.551856058\)
\(L(\frac12)\) \(\approx\) \(3.551856058\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p^{3} T \)
5 \( 1 \)
good2 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
7 \( 1 - 286 T + p^{6} T^{2} \)
11 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
13 \( 1 + 506 T + p^{6} T^{2} \)
17 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
19 \( 1 + 10582 T + p^{6} T^{2} \)
23 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
29 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
31 \( 1 - 35282 T + p^{6} T^{2} \)
37 \( 1 - 89206 T + p^{6} T^{2} \)
41 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
43 \( 1 + 111386 T + p^{6} T^{2} \)
47 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
53 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
59 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
61 \( 1 + 420838 T + p^{6} T^{2} \)
67 \( 1 + 172874 T + p^{6} T^{2} \)
71 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
73 \( 1 + 638066 T + p^{6} T^{2} \)
79 \( 1 + 204622 T + p^{6} T^{2} \)
83 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
89 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
97 \( 1 - 56446 T + p^{6} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.40322268034627153425769892085, −12.23682657755720627213823219175, −11.06764332868845672537737876472, −10.01198749221729798007824601902, −8.504596785111313594136755600501, −7.65191168829179693291548864484, −6.38995870996961307573186034498, −4.45797318955214575603676612236, −2.76797813870064018906311121440, −1.60714911858400301155132080589, 1.60714911858400301155132080589, 2.76797813870064018906311121440, 4.45797318955214575603676612236, 6.38995870996961307573186034498, 7.65191168829179693291548864484, 8.504596785111313594136755600501, 10.01198749221729798007824601902, 11.06764332868845672537737876472, 12.23682657755720627213823219175, 13.40322268034627153425769892085

Graph of the $Z$-function along the critical line