Properties

Label 2-75-25.11-c3-0-10
Degree $2$
Conductor $75$
Sign $-0.678 + 0.734i$
Analytic cond. $4.42514$
Root an. cond. $2.10360$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.08 + 0.787i)2-s + (0.927 − 2.85i)3-s + (−1.91 + 5.90i)4-s + (−3.83 − 10.5i)5-s + (1.24 + 3.82i)6-s − 12.2·7-s + (−5.88 − 18.0i)8-s + (−7.28 − 5.29i)9-s + (12.4 + 8.36i)10-s + (2.00 − 1.45i)11-s + (15.0 + 10.9i)12-s + (−69.2 − 50.3i)13-s + (13.2 − 9.61i)14-s + (−33.5 + 1.19i)15-s + (−19.5 − 14.1i)16-s + (−1.71 − 5.27i)17-s + ⋯
L(s)  = 1  + (−0.383 + 0.278i)2-s + (0.178 − 0.549i)3-s + (−0.239 + 0.737i)4-s + (−0.342 − 0.939i)5-s + (0.0845 + 0.260i)6-s − 0.659·7-s + (−0.259 − 0.799i)8-s + (−0.269 − 0.195i)9-s + (0.392 + 0.264i)10-s + (0.0550 − 0.0399i)11-s + (0.362 + 0.263i)12-s + (−1.47 − 1.07i)13-s + (0.252 − 0.183i)14-s + (−0.576 + 0.0206i)15-s + (−0.305 − 0.221i)16-s + (−0.0244 − 0.0752i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.678 + 0.734i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.678 + 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $-0.678 + 0.734i$
Analytic conductor: \(4.42514\)
Root analytic conductor: \(2.10360\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (61, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :3/2),\ -0.678 + 0.734i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.193212 - 0.441298i\)
\(L(\frac12)\) \(\approx\) \(0.193212 - 0.441298i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.927 + 2.85i)T \)
5 \( 1 + (3.83 + 10.5i)T \)
good2 \( 1 + (1.08 - 0.787i)T + (2.47 - 7.60i)T^{2} \)
7 \( 1 + 12.2T + 343T^{2} \)
11 \( 1 + (-2.00 + 1.45i)T + (411. - 1.26e3i)T^{2} \)
13 \( 1 + (69.2 + 50.3i)T + (678. + 2.08e3i)T^{2} \)
17 \( 1 + (1.71 + 5.27i)T + (-3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (7.45 + 22.9i)T + (-5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 + (-83.6 + 60.7i)T + (3.75e3 - 1.15e4i)T^{2} \)
29 \( 1 + (35.3 - 108. i)T + (-1.97e4 - 1.43e4i)T^{2} \)
31 \( 1 + (-47.5 - 146. i)T + (-2.41e4 + 1.75e4i)T^{2} \)
37 \( 1 + (-277. - 201. i)T + (1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (28.0 + 20.3i)T + (2.12e4 + 6.55e4i)T^{2} \)
43 \( 1 + 154.T + 7.95e4T^{2} \)
47 \( 1 + (-104. + 321. i)T + (-8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (-199. + 614. i)T + (-1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (536. + 389. i)T + (6.34e4 + 1.95e5i)T^{2} \)
61 \( 1 + (-289. + 210. i)T + (7.01e4 - 2.15e5i)T^{2} \)
67 \( 1 + (164. + 505. i)T + (-2.43e5 + 1.76e5i)T^{2} \)
71 \( 1 + (196. - 603. i)T + (-2.89e5 - 2.10e5i)T^{2} \)
73 \( 1 + (779. - 565. i)T + (1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (-175. + 540. i)T + (-3.98e5 - 2.89e5i)T^{2} \)
83 \( 1 + (98.8 + 304. i)T + (-4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + (-1.07e3 + 784. i)T + (2.17e5 - 6.70e5i)T^{2} \)
97 \( 1 + (-123. + 379. i)T + (-7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.16181297920127755648590079413, −12.74702960089473816358979268323, −11.85425630224320709888046590625, −9.901456376470033100859765813955, −8.826148943800628397275154859558, −7.889119808927284447837477650447, −6.85622369258404367934790982353, −4.92788999550245332650459027205, −3.11441540155548608364361855070, −0.32851606819419246574153433126, 2.55787568898113425710359091875, 4.38003479015614342344747739740, 6.08104371947676307887277704717, 7.48561378267204131755997211267, 9.266712915363298048474243053550, 9.860960757191152509292537627425, 10.92148368129796059822084050550, 11.90881774612658171217182932801, 13.63222141423997588086090995489, 14.68750970783036459134554137220

Graph of the $Z$-function along the critical line