Properties

Label 2-75-25.21-c3-0-10
Degree $2$
Conductor $75$
Sign $-0.345 + 0.938i$
Analytic cond. $4.42514$
Root an. cond. $2.10360$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.722 + 2.22i)2-s + (−2.42 − 1.76i)3-s + (2.04 + 1.48i)4-s + (−1.87 − 11.0i)5-s + (5.67 − 4.12i)6-s − 32.9·7-s + (−19.9 + 14.4i)8-s + (2.78 + 8.55i)9-s + (25.8 + 3.78i)10-s + (15.3 − 47.0i)11-s + (−2.34 − 7.20i)12-s + (−16.0 − 49.4i)13-s + (23.8 − 73.2i)14-s + (−14.8 + 30.0i)15-s + (−11.5 − 35.5i)16-s + (47.8 − 34.7i)17-s + ⋯
L(s)  = 1  + (−0.255 + 0.786i)2-s + (−0.467 − 0.339i)3-s + (0.255 + 0.185i)4-s + (−0.168 − 0.985i)5-s + (0.386 − 0.280i)6-s − 1.77·7-s + (−0.880 + 0.639i)8-s + (0.103 + 0.317i)9-s + (0.818 + 0.119i)10-s + (0.419 − 1.29i)11-s + (−0.0563 − 0.173i)12-s + (−0.342 − 1.05i)13-s + (0.454 − 1.39i)14-s + (−0.255 + 0.517i)15-s + (−0.180 − 0.555i)16-s + (0.682 − 0.495i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.345 + 0.938i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.345 + 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $-0.345 + 0.938i$
Analytic conductor: \(4.42514\)
Root analytic conductor: \(2.10360\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (46, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :3/2),\ -0.345 + 0.938i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.216466 - 0.310527i\)
\(L(\frac12)\) \(\approx\) \(0.216466 - 0.310527i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (2.42 + 1.76i)T \)
5 \( 1 + (1.87 + 11.0i)T \)
good2 \( 1 + (0.722 - 2.22i)T + (-6.47 - 4.70i)T^{2} \)
7 \( 1 + 32.9T + 343T^{2} \)
11 \( 1 + (-15.3 + 47.0i)T + (-1.07e3 - 782. i)T^{2} \)
13 \( 1 + (16.0 + 49.4i)T + (-1.77e3 + 1.29e3i)T^{2} \)
17 \( 1 + (-47.8 + 34.7i)T + (1.51e3 - 4.67e3i)T^{2} \)
19 \( 1 + (118. - 85.8i)T + (2.11e3 - 6.52e3i)T^{2} \)
23 \( 1 + (15.0 - 46.2i)T + (-9.84e3 - 7.15e3i)T^{2} \)
29 \( 1 + (-26.4 - 19.2i)T + (7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (-66.1 + 48.0i)T + (9.20e3 - 2.83e4i)T^{2} \)
37 \( 1 + (-86.0 - 264. i)T + (-4.09e4 + 2.97e4i)T^{2} \)
41 \( 1 + (91.7 + 282. i)T + (-5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 + 64.8T + 7.95e4T^{2} \)
47 \( 1 + (124. + 90.6i)T + (3.20e4 + 9.87e4i)T^{2} \)
53 \( 1 + (127. + 92.4i)T + (4.60e4 + 1.41e5i)T^{2} \)
59 \( 1 + (-126. - 389. i)T + (-1.66e5 + 1.20e5i)T^{2} \)
61 \( 1 + (50.8 - 156. i)T + (-1.83e5 - 1.33e5i)T^{2} \)
67 \( 1 + (-120. + 87.6i)T + (9.29e4 - 2.86e5i)T^{2} \)
71 \( 1 + (356. + 259. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-291. + 897. i)T + (-3.14e5 - 2.28e5i)T^{2} \)
79 \( 1 + (317. + 230. i)T + (1.52e5 + 4.68e5i)T^{2} \)
83 \( 1 + (-922. + 670. i)T + (1.76e5 - 5.43e5i)T^{2} \)
89 \( 1 + (-412. + 1.26e3i)T + (-5.70e5 - 4.14e5i)T^{2} \)
97 \( 1 + (-87.6 - 63.6i)T + (2.82e5 + 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.50473140121334595725668661759, −12.57553609659123646236082672703, −11.85538381318954454991011957782, −10.19034473528400488869170700110, −8.843219152174558997182807512414, −7.82749865962159180478412189591, −6.39371567324165523308163205321, −5.69348675129531961714411137356, −3.31776476362022008362124736033, −0.25632144848117172234860231318, 2.48704916716072680019305927197, 3.96147083247907059910350192467, 6.45659734123936710923941021586, 6.78014190038809411789093009110, 9.431422285286077878538894456845, 9.984828356738783742839204369226, 10.92068059214132269610217478344, 12.06724242757481158039145064610, 12.81564643584585775645081561544, 14.62137929903596215719318064316

Graph of the $Z$-function along the critical line