Properties

Label 4-75e2-1.1-c2e2-0-3
Degree $4$
Conductor $5625$
Sign $1$
Analytic cond. $4.17630$
Root an. cond. $1.42954$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s − 3·4-s + 16·9-s − 15·12-s + 20·13-s − 7·16-s + 14·19-s + 35·27-s + 84·31-s − 48·36-s − 80·37-s + 100·39-s − 100·43-s − 35·48-s − 98·49-s − 60·52-s + 70·57-s − 16·61-s + 69·64-s + 90·67-s − 70·73-s − 42·76-s + 24·79-s + 31·81-s + 420·93-s − 140·97-s − 140·103-s + ⋯
L(s)  = 1  + 5/3·3-s − 3/4·4-s + 16/9·9-s − 5/4·12-s + 1.53·13-s − 0.437·16-s + 0.736·19-s + 1.29·27-s + 2.70·31-s − 4/3·36-s − 2.16·37-s + 2.56·39-s − 2.32·43-s − 0.729·48-s − 2·49-s − 1.15·52-s + 1.22·57-s − 0.262·61-s + 1.07·64-s + 1.34·67-s − 0.958·73-s − 0.552·76-s + 0.303·79-s + 0.382·81-s + 4.51·93-s − 1.44·97-s − 1.35·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5625 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5625\)    =    \(3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(4.17630\)
Root analytic conductor: \(1.42954\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5625,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.180296960\)
\(L(\frac12)\) \(\approx\) \(2.180296960\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - 5 T + p^{2} T^{2} \)
5 \( 1 \)
good2$C_2^2$ \( 1 + 3 T^{2} + p^{4} T^{4} \)
7$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 + 3 p T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 567 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 - 7 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 662 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 582 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 40 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 3087 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + 50 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 2262 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 3462 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 2562 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 45 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 8982 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 35 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 12 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 8927 T^{2} + p^{4} T^{4} \)
89$C_2$ \( ( 1 - 97 T + p^{2} T^{2} )( 1 + 97 T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 + 70 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.95953182210514325200891352014, −13.72782853245592877672190168231, −13.55862194197754773092735335042, −13.49279919352567698479479415926, −12.59337311057663701345596592461, −11.91069305517941890141965717447, −11.29199451049496471615975298792, −10.48430964046182217552495818096, −9.766789116580336746736852012413, −9.546116413985088768173499340921, −8.549041823923230332579214224462, −8.492993092380618009236812325576, −8.030741832526778092557111329723, −6.93171704267930231635187998153, −6.46956382172972312094536406113, −5.22302058591136755183603019448, −4.45213285449670508195301003069, −3.59858777141580928655827625422, −3.00064641519853935587648086936, −1.57153493423383635095801869848, 1.57153493423383635095801869848, 3.00064641519853935587648086936, 3.59858777141580928655827625422, 4.45213285449670508195301003069, 5.22302058591136755183603019448, 6.46956382172972312094536406113, 6.93171704267930231635187998153, 8.030741832526778092557111329723, 8.492993092380618009236812325576, 8.549041823923230332579214224462, 9.546116413985088768173499340921, 9.766789116580336746736852012413, 10.48430964046182217552495818096, 11.29199451049496471615975298792, 11.91069305517941890141965717447, 12.59337311057663701345596592461, 13.49279919352567698479479415926, 13.55862194197754773092735335042, 13.72782853245592877672190168231, 14.95953182210514325200891352014

Graph of the $Z$-function along the critical line