Properties

Label 16-75e8-1.1-c1e8-0-0
Degree $16$
Conductor $1.001\times 10^{15}$
Sign $1$
Analytic cond. $0.0165465$
Root an. cond. $0.773872$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 3·4-s − 5·5-s + 2·6-s + 4·7-s − 2·8-s + 9-s + 5·10-s + 16·11-s − 6·12-s − 8·13-s − 4·14-s + 10·15-s + 4·16-s − 17-s − 18-s − 5·19-s − 15·20-s − 8·21-s − 16·22-s + 7·23-s + 4·24-s + 5·25-s + 8·26-s + 12·28-s + 5·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 3/2·4-s − 2.23·5-s + 0.816·6-s + 1.51·7-s − 0.707·8-s + 1/3·9-s + 1.58·10-s + 4.82·11-s − 1.73·12-s − 2.21·13-s − 1.06·14-s + 2.58·15-s + 16-s − 0.242·17-s − 0.235·18-s − 1.14·19-s − 3.35·20-s − 1.74·21-s − 3.41·22-s + 1.45·23-s + 0.816·24-s + 25-s + 1.56·26-s + 2.26·28-s + 0.928·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{8} \cdot 5^{16}\)
Sign: $1$
Analytic conductor: \(0.0165465\)
Root analytic conductor: \(0.773872\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{8} \cdot 5^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3162830153\)
\(L(\frac12)\) \(\approx\) \(0.3162830153\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
5 \( 1 + p T + 4 p T^{2} + 13 p T^{3} + 31 p T^{4} + 13 p^{2} T^{5} + 4 p^{3} T^{6} + p^{4} T^{7} + p^{4} T^{8} \)
good2 \( ( 1 - p T + p T^{2} - 5 T^{3} + 11 T^{4} - 5 p T^{5} + p^{3} T^{6} - p^{4} T^{7} + p^{4} T^{8} )( 1 + 3 T + p T^{2} + T^{4} + p^{3} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} ) \)
7 \( ( 1 - 2 T + 12 T^{2} - 15 T^{3} + 61 T^{4} - 15 p T^{5} + 12 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
11 \( 1 - 16 T + 105 T^{2} - 340 T^{3} + 390 T^{4} + 1332 T^{5} - 9707 T^{6} + 42730 T^{7} - 156045 T^{8} + 42730 p T^{9} - 9707 p^{2} T^{10} + 1332 p^{3} T^{11} + 390 p^{4} T^{12} - 340 p^{5} T^{13} + 105 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 + 8 T + 17 T^{2} + 14 T^{3} + 276 T^{4} + 578 T^{5} - 4815 T^{6} - 18048 T^{7} - 25061 T^{8} - 18048 p T^{9} - 4815 p^{2} T^{10} + 578 p^{3} T^{11} + 276 p^{4} T^{12} + 14 p^{5} T^{13} + 17 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 + T - 27 T^{2} - 38 T^{3} + 591 T^{4} + 456 T^{5} - 11720 T^{6} - 3109 T^{7} + 167979 T^{8} - 3109 p T^{9} - 11720 p^{2} T^{10} + 456 p^{3} T^{11} + 591 p^{4} T^{12} - 38 p^{5} T^{13} - 27 p^{6} T^{14} + p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 + 5 T - 33 T^{2} - 265 T^{3} - 47 T^{4} + 6980 T^{5} + 26814 T^{6} - 68150 T^{7} - 765695 T^{8} - 68150 p T^{9} + 26814 p^{2} T^{10} + 6980 p^{3} T^{11} - 47 p^{4} T^{12} - 265 p^{5} T^{13} - 33 p^{6} T^{14} + 5 p^{7} T^{15} + p^{8} T^{16} \)
23 \( 1 - 7 T + 12 T^{2} - 31 T^{3} + 1026 T^{4} - 672 T^{5} - 34550 T^{6} + 127672 T^{7} - 3411 T^{8} + 127672 p T^{9} - 34550 p^{2} T^{10} - 672 p^{3} T^{11} + 1026 p^{4} T^{12} - 31 p^{5} T^{13} + 12 p^{6} T^{14} - 7 p^{7} T^{15} + p^{8} T^{16} \)
29 \( 1 - 5 T + 12 T^{2} + 110 T^{3} - 322 T^{4} + 4795 T^{5} - 5456 T^{6} + 22500 T^{7} + 487955 T^{8} + 22500 p T^{9} - 5456 p^{2} T^{10} + 4795 p^{3} T^{11} - 322 p^{4} T^{12} + 110 p^{5} T^{13} + 12 p^{6} T^{14} - 5 p^{7} T^{15} + p^{8} T^{16} \)
31 \( 1 + 19 T + 110 T^{2} - 455 T^{3} - 10080 T^{4} - 55148 T^{5} - 24492 T^{6} + 1584870 T^{7} + 12593785 T^{8} + 1584870 p T^{9} - 24492 p^{2} T^{10} - 55148 p^{3} T^{11} - 10080 p^{4} T^{12} - 455 p^{5} T^{13} + 110 p^{6} T^{14} + 19 p^{7} T^{15} + p^{8} T^{16} \)
37 \( 1 + T + 3 T^{2} + 42 T^{3} + 2811 T^{4} + 3486 T^{5} - 59280 T^{6} + 126501 T^{7} + 3465939 T^{8} + 126501 p T^{9} - 59280 p^{2} T^{10} + 3486 p^{3} T^{11} + 2811 p^{4} T^{12} + 42 p^{5} T^{13} + 3 p^{6} T^{14} + p^{7} T^{15} + p^{8} T^{16} \)
41 \( ( 1 + 7 T + 28 T^{2} + 389 T^{3} + 3975 T^{4} + 389 p T^{5} + 28 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
43 \( ( 1 - 16 T + 233 T^{2} - 2040 T^{3} + 16241 T^{4} - 2040 p T^{5} + 233 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
47 \( 1 + T - 62 T^{2} - 78 T^{3} + 3466 T^{4} + 4691 T^{5} - 155900 T^{6} - 95604 T^{7} + 3265179 T^{8} - 95604 p T^{9} - 155900 p^{2} T^{10} + 4691 p^{3} T^{11} + 3466 p^{4} T^{12} - 78 p^{5} T^{13} - 62 p^{6} T^{14} + p^{7} T^{15} + p^{8} T^{16} \)
53 \( 1 + 3 T - 63 T^{2} - 6 T^{3} + 4741 T^{4} - 3522 T^{5} - 240240 T^{6} - 209553 T^{7} + 7555219 T^{8} - 209553 p T^{9} - 240240 p^{2} T^{10} - 3522 p^{3} T^{11} + 4741 p^{4} T^{12} - 6 p^{5} T^{13} - 63 p^{6} T^{14} + 3 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 - 30 T + 377 T^{2} - 2475 T^{3} + 8643 T^{4} - 1155 T^{5} - 582521 T^{6} + 10821600 T^{7} - 108687625 T^{8} + 10821600 p T^{9} - 582521 p^{2} T^{10} - 1155 p^{3} T^{11} + 8643 p^{4} T^{12} - 2475 p^{5} T^{13} + 377 p^{6} T^{14} - 30 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 + 14 T + 35 T^{2} + 110 T^{3} + 8070 T^{4} + 33812 T^{5} - 419217 T^{6} - 1871430 T^{7} + 12043555 T^{8} - 1871430 p T^{9} - 419217 p^{2} T^{10} + 33812 p^{3} T^{11} + 8070 p^{4} T^{12} + 110 p^{5} T^{13} + 35 p^{6} T^{14} + 14 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 - 4 T - 97 T^{2} + 122 T^{3} + 9681 T^{4} - 8074 T^{5} - 723795 T^{6} + 600576 T^{7} + 39163204 T^{8} + 600576 p T^{9} - 723795 p^{2} T^{10} - 8074 p^{3} T^{11} + 9681 p^{4} T^{12} + 122 p^{5} T^{13} - 97 p^{6} T^{14} - 4 p^{7} T^{15} + p^{8} T^{16} \)
71 \( 1 - 21 T + 305 T^{2} - 2480 T^{3} + 13165 T^{4} + 10682 T^{5} - 810942 T^{6} + 9320005 T^{7} - 80224815 T^{8} + 9320005 p T^{9} - 810942 p^{2} T^{10} + 10682 p^{3} T^{11} + 13165 p^{4} T^{12} - 2480 p^{5} T^{13} + 305 p^{6} T^{14} - 21 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 - 2 T - 163 T^{2} - 986 T^{3} + 8481 T^{4} + 176518 T^{5} + 938895 T^{6} - 6925578 T^{7} - 156207836 T^{8} - 6925578 p T^{9} + 938895 p^{2} T^{10} + 176518 p^{3} T^{11} + 8481 p^{4} T^{12} - 986 p^{5} T^{13} - 163 p^{6} T^{14} - 2 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 + 30 T + 447 T^{2} + 5690 T^{3} + 63618 T^{4} + 615980 T^{5} + 6355819 T^{6} + 63162750 T^{7} + 565067755 T^{8} + 63162750 p T^{9} + 6355819 p^{2} T^{10} + 615980 p^{3} T^{11} + 63618 p^{4} T^{12} + 5690 p^{5} T^{13} + 447 p^{6} T^{14} + 30 p^{7} T^{15} + p^{8} T^{16} \)
83 \( 1 - 2 T - 123 T^{2} - 626 T^{3} + 1416 T^{4} + 170328 T^{5} + 1146775 T^{6} - 9202888 T^{7} - 131919081 T^{8} - 9202888 p T^{9} + 1146775 p^{2} T^{10} + 170328 p^{3} T^{11} + 1416 p^{4} T^{12} - 626 p^{5} T^{13} - 123 p^{6} T^{14} - 2 p^{7} T^{15} + p^{8} T^{16} \)
89 \( 1 + 77 T^{2} + 700 T^{3} + 12658 T^{4} + 121100 T^{5} + 1037049 T^{6} + 10883950 T^{7} + 150329955 T^{8} + 10883950 p T^{9} + 1037049 p^{2} T^{10} + 121100 p^{3} T^{11} + 12658 p^{4} T^{12} + 700 p^{5} T^{13} + 77 p^{6} T^{14} + p^{8} T^{16} \)
97 \( 1 + 6 T - 187 T^{2} - 1878 T^{3} + 3816 T^{4} + 286836 T^{5} + 2735335 T^{6} - 15219804 T^{7} - 421030321 T^{8} - 15219804 p T^{9} + 2735335 p^{2} T^{10} + 286836 p^{3} T^{11} + 3816 p^{4} T^{12} - 1878 p^{5} T^{13} - 187 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.07441591885586723161032691744, −6.82897089154161743614652082254, −6.61011354759931948323651842407, −6.56765217069018723970081181290, −6.55204703138270377280349323383, −6.20995597231840924001267324057, −6.01136285493052456653856731428, −5.66615835151269864645800604719, −5.53867550354446828730854890838, −5.32741251771318038482834534986, −5.09091111200148148826686848611, −5.04760304503068009493116287523, −4.68547529185890976712171486678, −4.33030130136225072478253153961, −4.27783528232799575203852884513, −3.97878051966837113801854979187, −3.83999394468772514139806867964, −3.77890393163148542464647578407, −3.74855643477579559495475683320, −2.93910431623978555694765773375, −2.92892643071426576466133044833, −2.33206772867143503342010671730, −1.81778738923904851338622341369, −1.73835891101938825072449857934, −1.30193379590582868871331673828, 1.30193379590582868871331673828, 1.73835891101938825072449857934, 1.81778738923904851338622341369, 2.33206772867143503342010671730, 2.92892643071426576466133044833, 2.93910431623978555694765773375, 3.74855643477579559495475683320, 3.77890393163148542464647578407, 3.83999394468772514139806867964, 3.97878051966837113801854979187, 4.27783528232799575203852884513, 4.33030130136225072478253153961, 4.68547529185890976712171486678, 5.04760304503068009493116287523, 5.09091111200148148826686848611, 5.32741251771318038482834534986, 5.53867550354446828730854890838, 5.66615835151269864645800604719, 6.01136285493052456653856731428, 6.20995597231840924001267324057, 6.55204703138270377280349323383, 6.56765217069018723970081181290, 6.61011354759931948323651842407, 6.82897089154161743614652082254, 7.07441591885586723161032691744

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.