Properties

Label 6-740e3-1.1-c1e3-0-0
Degree $6$
Conductor $405224000$
Sign $1$
Analytic cond. $206.312$
Root an. cond. $2.43082$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 2·7-s − 5·9-s − 4·11-s + 6·13-s + 10·17-s + 18·19-s − 2·23-s + 6·25-s + 2·27-s − 2·29-s − 6·35-s − 3·37-s − 6·41-s + 10·43-s + 15·45-s + 14·47-s + 3·49-s + 6·53-s + 12·55-s + 8·59-s + 10·61-s − 10·63-s − 18·65-s + 20·67-s − 32·71-s + 2·73-s + ⋯
L(s)  = 1  − 1.34·5-s + 0.755·7-s − 5/3·9-s − 1.20·11-s + 1.66·13-s + 2.42·17-s + 4.12·19-s − 0.417·23-s + 6/5·25-s + 0.384·27-s − 0.371·29-s − 1.01·35-s − 0.493·37-s − 0.937·41-s + 1.52·43-s + 2.23·45-s + 2.04·47-s + 3/7·49-s + 0.824·53-s + 1.61·55-s + 1.04·59-s + 1.28·61-s − 1.25·63-s − 2.23·65-s + 2.44·67-s − 3.79·71-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{3} \cdot 37^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{3} \cdot 37^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{6} \cdot 5^{3} \cdot 37^{3}\)
Sign: $1$
Analytic conductor: \(206.312\)
Root analytic conductor: \(2.43082\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{6} \cdot 5^{3} \cdot 37^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.256570535\)
\(L(\frac12)\) \(\approx\) \(2.256570535\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{3} \)
37$C_1$ \( ( 1 + T )^{3} \)
good3$S_4\times C_2$ \( 1 + 5 T^{2} - 2 T^{3} + 5 p T^{4} + p^{3} T^{6} \) 3.3.a_f_ac
7$S_4\times C_2$ \( 1 - 2 T + T^{2} + 22 T^{3} + p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \) 3.7.ac_b_w
11$S_4\times C_2$ \( 1 + 4 T + 25 T^{2} + 72 T^{3} + 25 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \) 3.11.e_z_cu
13$S_4\times C_2$ \( 1 - 6 T + 23 T^{2} - 56 T^{3} + 23 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.13.ag_x_ace
17$S_4\times C_2$ \( 1 - 10 T + 3 p T^{2} - 192 T^{3} + 3 p^{2} T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} \) 3.17.ak_bz_ahk
19$S_4\times C_2$ \( 1 - 18 T + 161 T^{2} - 878 T^{3} + 161 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \) 3.19.as_gf_abhu
23$S_4\times C_2$ \( 1 + 2 T + 57 T^{2} + 84 T^{3} + 57 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \) 3.23.c_cf_dg
29$S_4\times C_2$ \( 1 + 2 T + 35 T^{2} - 68 T^{3} + 35 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \) 3.29.c_bj_acq
31$S_4\times C_2$ \( 1 + 57 T^{2} - 54 T^{3} + 57 p T^{4} + p^{3} T^{6} \) 3.31.a_cf_acc
41$S_4\times C_2$ \( 1 + 6 T + 119 T^{2} + 452 T^{3} + 119 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \) 3.41.g_ep_rk
43$S_4\times C_2$ \( 1 - 10 T + 109 T^{2} - 868 T^{3} + 109 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} \) 3.43.ak_ef_abhk
47$S_4\times C_2$ \( 1 - 14 T + 3 p T^{2} - 1242 T^{3} + 3 p^{2} T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \) 3.47.ao_fl_abvu
53$S_4\times C_2$ \( 1 - 6 T + 59 T^{2} - 836 T^{3} + 59 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.53.ag_ch_abge
59$S_4\times C_2$ \( 1 - 8 T + 85 T^{2} - 786 T^{3} + 85 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \) 3.59.ai_dh_abeg
61$S_4\times C_2$ \( 1 - 10 T - 29 T^{2} + 836 T^{3} - 29 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} \) 3.61.ak_abd_bge
67$S_4\times C_2$ \( 1 - 20 T + 153 T^{2} - 830 T^{3} + 153 p T^{4} - 20 p^{2} T^{5} + p^{3} T^{6} \) 3.67.au_fx_abfy
71$S_4\times C_2$ \( 1 + 32 T + 517 T^{2} + 5280 T^{3} + 517 p T^{4} + 32 p^{2} T^{5} + p^{3} T^{6} \) 3.71.bg_tx_hvc
73$S_4\times C_2$ \( 1 - 2 T + 207 T^{2} - 284 T^{3} + 207 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \) 3.73.ac_hz_aky
79$S_4\times C_2$ \( 1 + 8 T + 197 T^{2} + 1002 T^{3} + 197 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \) 3.79.i_hp_bmo
83$S_4\times C_2$ \( 1 + 16 T + 313 T^{2} + 2730 T^{3} + 313 p T^{4} + 16 p^{2} T^{5} + p^{3} T^{6} \) 3.83.q_mb_eba
89$S_4\times C_2$ \( 1 + 6 T + 87 T^{2} + 852 T^{3} + 87 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \) 3.89.g_dj_bgu
97$S_4\times C_2$ \( 1 - 18 T + 383 T^{2} - 3628 T^{3} + 383 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \) 3.97.as_ot_afjo
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.219766453059109621326389419320, −8.693686070883943946110029143886, −8.606031445157603895972500082029, −8.445982142185202657274368423521, −7.88732067957471548527583511297, −7.86494130682760323250515299072, −7.63915800517942326986221648021, −7.32946555558656681313014232762, −7.05114114867681419891688651742, −6.77499573455577936889579889750, −5.88067081928386728704812378843, −5.68333533225066731175895703934, −5.64537447012081222041193915883, −5.44767310540767139211209495284, −5.10884531878253907202826604715, −4.74106964991201324251356936378, −3.98614568204043363621333769692, −3.72272476149387066681604674080, −3.64623831715199675677521248447, −3.03950563740928009722648474787, −2.78548965009449560310630848329, −2.68234812895512438218964964944, −1.47808082823774441614281911443, −1.09579532768193590386799512452, −0.68024316918978915770171989201, 0.68024316918978915770171989201, 1.09579532768193590386799512452, 1.47808082823774441614281911443, 2.68234812895512438218964964944, 2.78548965009449560310630848329, 3.03950563740928009722648474787, 3.64623831715199675677521248447, 3.72272476149387066681604674080, 3.98614568204043363621333769692, 4.74106964991201324251356936378, 5.10884531878253907202826604715, 5.44767310540767139211209495284, 5.64537447012081222041193915883, 5.68333533225066731175895703934, 5.88067081928386728704812378843, 6.77499573455577936889579889750, 7.05114114867681419891688651742, 7.32946555558656681313014232762, 7.63915800517942326986221648021, 7.86494130682760323250515299072, 7.88732067957471548527583511297, 8.445982142185202657274368423521, 8.606031445157603895972500082029, 8.693686070883943946110029143886, 9.219766453059109621326389419320

Graph of the $Z$-function along the critical line