Properties

Label 2-74-1.1-c5-0-10
Degree $2$
Conductor $74$
Sign $1$
Analytic cond. $11.8684$
Root an. cond. $3.44505$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 28.0·3-s + 16·4-s − 31.0·5-s + 112.·6-s + 14.7·7-s + 64·8-s + 542.·9-s − 124.·10-s + 0.310·11-s + 448.·12-s + 699.·13-s + 59.1·14-s − 869.·15-s + 256·16-s − 1.22e3·17-s + 2.17e3·18-s − 701.·19-s − 496.·20-s + 414.·21-s + 1.24·22-s − 2.75e3·23-s + 1.79e3·24-s − 2.16e3·25-s + 2.79e3·26-s + 8.40e3·27-s + 236.·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.79·3-s + 0.5·4-s − 0.554·5-s + 1.27·6-s + 0.113·7-s + 0.353·8-s + 2.23·9-s − 0.392·10-s + 0.000773·11-s + 0.899·12-s + 1.14·13-s + 0.0805·14-s − 0.997·15-s + 0.250·16-s − 1.03·17-s + 1.57·18-s − 0.445·19-s − 0.277·20-s + 0.204·21-s + 0.000546·22-s − 1.08·23-s + 0.635·24-s − 0.692·25-s + 0.812·26-s + 2.21·27-s + 0.0569·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $1$
Analytic conductor: \(11.8684\)
Root analytic conductor: \(3.44505\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.397987368\)
\(L(\frac12)\) \(\approx\) \(4.397987368\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
37 \( 1 + 1.36e3T \)
good3 \( 1 - 28.0T + 243T^{2} \)
5 \( 1 + 31.0T + 3.12e3T^{2} \)
7 \( 1 - 14.7T + 1.68e4T^{2} \)
11 \( 1 - 0.310T + 1.61e5T^{2} \)
13 \( 1 - 699.T + 3.71e5T^{2} \)
17 \( 1 + 1.22e3T + 1.41e6T^{2} \)
19 \( 1 + 701.T + 2.47e6T^{2} \)
23 \( 1 + 2.75e3T + 6.43e6T^{2} \)
29 \( 1 - 4.11e3T + 2.05e7T^{2} \)
31 \( 1 - 1.44e3T + 2.86e7T^{2} \)
41 \( 1 + 1.91e4T + 1.15e8T^{2} \)
43 \( 1 - 1.08e4T + 1.47e8T^{2} \)
47 \( 1 + 1.44e4T + 2.29e8T^{2} \)
53 \( 1 + 1.95e4T + 4.18e8T^{2} \)
59 \( 1 - 4.72e4T + 7.14e8T^{2} \)
61 \( 1 - 2.79e4T + 8.44e8T^{2} \)
67 \( 1 + 4.05e4T + 1.35e9T^{2} \)
71 \( 1 - 1.57e4T + 1.80e9T^{2} \)
73 \( 1 + 5.45e3T + 2.07e9T^{2} \)
79 \( 1 - 2.24e4T + 3.07e9T^{2} \)
83 \( 1 + 9.30e4T + 3.93e9T^{2} \)
89 \( 1 - 1.31e5T + 5.58e9T^{2} \)
97 \( 1 + 7.14e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.68728983385600010496342542858, −12.95628639185684783689301871403, −11.56448902232000821402369885156, −10.13690665494851137406028849838, −8.676584012830275600583717105797, −7.978512512658011078879882459553, −6.58326386559907063228836810047, −4.34508203116806494244058070937, −3.40821172019087673500560295635, −1.95631710291740471464130684684, 1.95631710291740471464130684684, 3.40821172019087673500560295635, 4.34508203116806494244058070937, 6.58326386559907063228836810047, 7.978512512658011078879882459553, 8.676584012830275600583717105797, 10.13690665494851137406028849838, 11.56448902232000821402369885156, 12.95628639185684783689301871403, 13.68728983385600010496342542858

Graph of the $Z$-function along the critical line