Properties

Label 2-74-1.1-c5-0-8
Degree $2$
Conductor $74$
Sign $1$
Analytic cond. $11.8684$
Root an. cond. $3.44505$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16.6·3-s + 16·4-s + 46.0·5-s + 66.5·6-s + 16.5·7-s + 64·8-s + 34.1·9-s + 184.·10-s + 514.·11-s + 266.·12-s − 1.10e3·13-s + 66.1·14-s + 766.·15-s + 256·16-s + 1.15e3·17-s + 136.·18-s − 1.49e3·19-s + 736.·20-s + 275.·21-s + 2.05e3·22-s + 3.06e3·23-s + 1.06e3·24-s − 1.00e3·25-s − 4.40e3·26-s − 3.47e3·27-s + 264.·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.06·3-s + 0.5·4-s + 0.823·5-s + 0.755·6-s + 0.127·7-s + 0.353·8-s + 0.140·9-s + 0.582·10-s + 1.28·11-s + 0.533·12-s − 1.80·13-s + 0.0902·14-s + 0.879·15-s + 0.250·16-s + 0.966·17-s + 0.0993·18-s − 0.952·19-s + 0.411·20-s + 0.136·21-s + 0.906·22-s + 1.20·23-s + 0.377·24-s − 0.321·25-s − 1.27·26-s − 0.917·27-s + 0.0638·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $1$
Analytic conductor: \(11.8684\)
Root analytic conductor: \(3.44505\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.116133820\)
\(L(\frac12)\) \(\approx\) \(4.116133820\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
37 \( 1 + 1.36e3T \)
good3 \( 1 - 16.6T + 243T^{2} \)
5 \( 1 - 46.0T + 3.12e3T^{2} \)
7 \( 1 - 16.5T + 1.68e4T^{2} \)
11 \( 1 - 514.T + 1.61e5T^{2} \)
13 \( 1 + 1.10e3T + 3.71e5T^{2} \)
17 \( 1 - 1.15e3T + 1.41e6T^{2} \)
19 \( 1 + 1.49e3T + 2.47e6T^{2} \)
23 \( 1 - 3.06e3T + 6.43e6T^{2} \)
29 \( 1 + 2.09e3T + 2.05e7T^{2} \)
31 \( 1 - 6.32e3T + 2.86e7T^{2} \)
41 \( 1 - 9.09e3T + 1.15e8T^{2} \)
43 \( 1 + 2.16e4T + 1.47e8T^{2} \)
47 \( 1 + 172.T + 2.29e8T^{2} \)
53 \( 1 + 2.97e4T + 4.18e8T^{2} \)
59 \( 1 + 1.59e4T + 7.14e8T^{2} \)
61 \( 1 + 1.67e4T + 8.44e8T^{2} \)
67 \( 1 + 2.19e4T + 1.35e9T^{2} \)
71 \( 1 - 2.43e4T + 1.80e9T^{2} \)
73 \( 1 + 4.74e4T + 2.07e9T^{2} \)
79 \( 1 - 3.84e4T + 3.07e9T^{2} \)
83 \( 1 - 5.76e4T + 3.93e9T^{2} \)
89 \( 1 - 1.09e5T + 5.58e9T^{2} \)
97 \( 1 - 6.69e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.84517823030856306177284876530, −12.72805399988035368223371348902, −11.65437405509230339152595863093, −9.998392555773937025026491078001, −9.132069830562385137968453112995, −7.69359351906615319697410666501, −6.34125199032074962812099885236, −4.80983134210244023011291018253, −3.17296304773183854232197323536, −1.90590123025953163547925026449, 1.90590123025953163547925026449, 3.17296304773183854232197323536, 4.80983134210244023011291018253, 6.34125199032074962812099885236, 7.69359351906615319697410666501, 9.132069830562385137968453112995, 9.998392555773937025026491078001, 11.65437405509230339152595863093, 12.72805399988035368223371348902, 13.84517823030856306177284876530

Graph of the $Z$-function along the critical line