Properties

Label 6-74e3-1.1-c5e3-0-0
Degree $6$
Conductor $405224$
Sign $-1$
Analytic cond. $1671.77$
Root an. cond. $3.44505$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·2-s − 8·3-s + 96·4-s − 42·5-s + 96·6-s + 84·7-s − 640·8-s − 236·9-s + 504·10-s + 304·11-s − 768·12-s − 806·13-s − 1.00e3·14-s + 336·15-s + 3.84e3·16-s + 246·17-s + 2.83e3·18-s − 4.44e3·19-s − 4.03e3·20-s − 672·21-s − 3.64e3·22-s − 2.89e3·23-s + 5.12e3·24-s − 8.19e3·25-s + 9.67e3·26-s − 68·27-s + 8.06e3·28-s + ⋯
L(s)  = 1  − 2.12·2-s − 0.513·3-s + 3·4-s − 0.751·5-s + 1.08·6-s + 0.647·7-s − 3.53·8-s − 0.971·9-s + 1.59·10-s + 0.757·11-s − 1.53·12-s − 1.32·13-s − 1.37·14-s + 0.385·15-s + 15/4·16-s + 0.206·17-s + 2.06·18-s − 2.82·19-s − 2.25·20-s − 0.332·21-s − 1.60·22-s − 1.14·23-s + 1.81·24-s − 2.62·25-s + 2.80·26-s − 0.0179·27-s + 1.94·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405224 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405224 ^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(405224\)    =    \(2^{3} \cdot 37^{3}\)
Sign: $-1$
Analytic conductor: \(1671.77\)
Root analytic conductor: \(3.44505\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 405224,\ (\ :5/2, 5/2, 5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{2} T )^{3} \)
37$C_1$ \( ( 1 + p^{2} T )^{3} \)
good3$S_4\times C_2$ \( 1 + 8 T + 100 p T^{2} + 484 p^{2} T^{3} + 100 p^{6} T^{4} + 8 p^{10} T^{5} + p^{15} T^{6} \)
5$C_2$ \( ( 1 + 14 T + p^{5} T^{2} )^{3} \)
7$S_4\times C_2$ \( 1 - 12 p T + 436 p^{2} T^{2} - 261892 p T^{3} + 436 p^{7} T^{4} - 12 p^{11} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 - 304 T + 308940 T^{2} - 86435348 T^{3} + 308940 p^{5} T^{4} - 304 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 + 62 p T + 1170451 T^{2} + 597601540 T^{3} + 1170451 p^{5} T^{4} + 62 p^{11} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 - 246 T + 635179 T^{2} + 1415701908 T^{3} + 635179 p^{5} T^{4} - 246 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 + 4442 T + 13573033 T^{2} + 24576720828 T^{3} + 13573033 p^{5} T^{4} + 4442 p^{10} T^{5} + p^{15} T^{6} \)
23$S_4\times C_2$ \( 1 + 126 p T + 17785857 T^{2} + 35874084148 T^{3} + 17785857 p^{5} T^{4} + 126 p^{11} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 + 1790 T + 28702627 T^{2} + 96751645204 T^{3} + 28702627 p^{5} T^{4} + 1790 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 14606 T + 130844445 T^{2} + 795177658692 T^{3} + 130844445 p^{5} T^{4} + 14606 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 - 8044 T + 214804256 T^{2} - 2100913006630 T^{3} + 214804256 p^{5} T^{4} - 8044 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 + 8150 T + 278718925 T^{2} + 1864306258188 T^{3} + 278718925 p^{5} T^{4} + 8150 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 - 19788 T + 414242668 T^{2} - 6631759043716 T^{3} + 414242668 p^{5} T^{4} - 19788 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 - 38328 T + 1376940280 T^{2} - 31811002161602 T^{3} + 1376940280 p^{5} T^{4} - 38328 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 + 17062 T + 712408169 T^{2} + 20892854453572 T^{3} + 712408169 p^{5} T^{4} + 17062 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 + 32890 T + 2721505071 T^{2} + 54254253999780 T^{3} + 2721505071 p^{5} T^{4} + 32890 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 - 5540 T + 3907903225 T^{2} - 15063002156376 T^{3} + 3907903225 p^{5} T^{4} - 5540 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 + 14892 T + 3347627716 T^{2} + 24084072808404 T^{3} + 3347627716 p^{5} T^{4} + 14892 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 2492 T + 3549260632 T^{2} - 28447023318630 T^{3} + 3549260632 p^{5} T^{4} + 2492 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 + 129958 T + 5247285765 T^{2} + 103723632502004 T^{3} + 5247285765 p^{5} T^{4} + 129958 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 + 139996 T + 4655324156 T^{2} - 34218974597792 T^{3} + 4655324156 p^{5} T^{4} + 139996 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 58606 T + 17333307307 T^{2} + 649492384737788 T^{3} + 17333307307 p^{5} T^{4} + 58606 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 - 29814 T + 10981673803 T^{2} + 218582715007828 T^{3} + 10981673803 p^{5} T^{4} - 29814 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.35212617338866797450494403577, −11.96058895176099567483091312906, −11.79518946580277546150482364636, −11.51155792288521765470147175643, −11.04262550053426744140873559383, −10.87974256948957506319990254921, −10.39350359789315994919877478068, −10.00642563938605768816981272100, −9.538834683141986159469054491055, −9.285070186313359031037293883633, −8.664748934663705583295876886638, −8.422812065789780943203469806391, −8.211691688235971490444529112248, −7.52398940474048355789623300019, −7.23151334983606131279378008625, −7.16022109745467350875703454298, −6.00324681371719758137507066231, −5.97741167748201539400242437998, −5.69299256658390621179653556730, −4.61254591917814282358678794159, −3.99053569256398488509769100096, −3.61163673826036969769937912113, −2.38857358386980685215281518264, −2.04691304972201882973613773213, −1.58789295809563625998505140196, 0, 0, 0, 1.58789295809563625998505140196, 2.04691304972201882973613773213, 2.38857358386980685215281518264, 3.61163673826036969769937912113, 3.99053569256398488509769100096, 4.61254591917814282358678794159, 5.69299256658390621179653556730, 5.97741167748201539400242437998, 6.00324681371719758137507066231, 7.16022109745467350875703454298, 7.23151334983606131279378008625, 7.52398940474048355789623300019, 8.211691688235971490444529112248, 8.422812065789780943203469806391, 8.664748934663705583295876886638, 9.285070186313359031037293883633, 9.538834683141986159469054491055, 10.00642563938605768816981272100, 10.39350359789315994919877478068, 10.87974256948957506319990254921, 11.04262550053426744140873559383, 11.51155792288521765470147175643, 11.79518946580277546150482364636, 11.96058895176099567483091312906, 12.35212617338866797450494403577

Graph of the $Z$-function along the critical line