Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 12-s + 2·13-s + 16-s + 2·17-s − 18-s − 2·19-s + 8·23-s + 24-s − 2·26-s − 27-s − 8·29-s − 4·31-s − 32-s − 2·34-s + 36-s − 6·37-s + 2·38-s − 2·39-s − 10·41-s + 2·43-s − 8·46-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 0.554·13-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.458·19-s + 1.66·23-s + 0.204·24-s − 0.392·26-s − 0.192·27-s − 1.48·29-s − 0.718·31-s − 0.176·32-s − 0.342·34-s + 1/6·36-s − 0.986·37-s + 0.324·38-s − 0.320·39-s − 1.56·41-s + 0.304·43-s − 1.17·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(7350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{7350} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(1\)
Selberg data  =  \((2,\ 7350,\ (\ :1/2),\ -1)\)
\(L(1)\)  \(=\)  \(0\)
\(L(\frac12)\)  \(=\)  \(0\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.42159672991465945999332550436, −7.03332737048667142821960752715, −6.22433209622307589802135350707, −5.54415494259279278282156290596, −4.91068125664934290061451749608, −3.82808731971767829328884565947, −3.14320543152521888666730680028, −1.96631726900574192271988152612, −1.16305503249474348751406417943, 0, 1.16305503249474348751406417943, 1.96631726900574192271988152612, 3.14320543152521888666730680028, 3.82808731971767829328884565947, 4.91068125664934290061451749608, 5.54415494259279278282156290596, 6.22433209622307589802135350707, 7.03332737048667142821960752715, 7.42159672991465945999332550436

Graph of the $Z$-function along the critical line