Properties

Degree $2$
Conductor $7350$
Sign $-1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s − 11-s + 12-s − 13-s + 16-s + 18-s − 3·19-s − 22-s − 7·23-s + 24-s − 26-s + 27-s − 8·29-s − 2·31-s + 32-s − 33-s + 36-s − 11·37-s − 3·38-s − 39-s − 11·41-s − 8·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s − 0.277·13-s + 1/4·16-s + 0.235·18-s − 0.688·19-s − 0.213·22-s − 1.45·23-s + 0.204·24-s − 0.196·26-s + 0.192·27-s − 1.48·29-s − 0.359·31-s + 0.176·32-s − 0.174·33-s + 1/6·36-s − 1.80·37-s − 0.486·38-s − 0.160·39-s − 1.71·41-s − 1.21·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Motivic weight: \(1\)
Character: $\chi_{7350} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 3 T + p T^{2} \)
23 \( 1 + 7 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 11 T + p T^{2} \)
41 \( 1 + 11 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 5 T + p T^{2} \)
53 \( 1 - 11 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.32152115807614597129927686326, −7.03271907458506191188196403496, −6.03610627842806409208141826898, −5.42545615428333980722578510317, −4.65911051616813060532799752432, −3.80933976058569794819833624717, −3.35431246120768174032266436251, −2.22056784300383946507998461204, −1.76838682091167151224793845959, 0, 1.76838682091167151224793845959, 2.22056784300383946507998461204, 3.35431246120768174032266436251, 3.80933976058569794819833624717, 4.65911051616813060532799752432, 5.42545615428333980722578510317, 6.03610627842806409208141826898, 7.03271907458506191188196403496, 7.32152115807614597129927686326

Graph of the $Z$-function along the critical line