Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s − 2·11-s + 12-s − 7·13-s + 16-s + 7·17-s + 18-s − 8·19-s − 2·22-s − 5·23-s + 24-s − 7·26-s + 27-s + 9·29-s − 31-s + 32-s − 2·33-s + 7·34-s + 36-s − 2·37-s − 8·38-s − 7·39-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.603·11-s + 0.288·12-s − 1.94·13-s + 1/4·16-s + 1.69·17-s + 0.235·18-s − 1.83·19-s − 0.426·22-s − 1.04·23-s + 0.204·24-s − 1.37·26-s + 0.192·27-s + 1.67·29-s − 0.179·31-s + 0.176·32-s − 0.348·33-s + 1.20·34-s + 1/6·36-s − 0.328·37-s − 1.29·38-s − 1.12·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(7350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{7350} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(1\)
Selberg data  =  \((2,\ 7350,\ (\ :1/2),\ -1)\)
\(L(1)\)  \(=\)  \(0\)
\(L(\frac12)\)  \(=\)  \(0\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 7 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 5 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 11 T + p T^{2} \)
43 \( 1 - 3 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + 7 T + p T^{2} \)
61 \( 1 - 5 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.61578525849557810082041381311, −6.86459775322558522461574614804, −6.14968799483881721249827500251, −5.26075390625256239733437532333, −4.72131762994560594839583670413, −3.99684885775185847664073478878, −3.02655868394079864844594725672, −2.50203653191820691868489281428, −1.64511139213912030365153843556, 0, 1.64511139213912030365153843556, 2.50203653191820691868489281428, 3.02655868394079864844594725672, 3.99684885775185847664073478878, 4.72131762994560594839583670413, 5.26075390625256239733437532333, 6.14968799483881721249827500251, 6.86459775322558522461574614804, 7.61578525849557810082041381311

Graph of the $Z$-function along the critical line