Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s + 9-s − 4·11-s − 12-s − 2·13-s + 16-s − 6·17-s + 18-s − 4·22-s + 8·23-s − 24-s − 2·26-s − 27-s + 10·29-s + 8·31-s + 32-s + 4·33-s − 6·34-s + 36-s − 2·37-s + 2·39-s + 2·41-s − 8·43-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 1.20·11-s − 0.288·12-s − 0.554·13-s + 1/4·16-s − 1.45·17-s + 0.235·18-s − 0.852·22-s + 1.66·23-s − 0.204·24-s − 0.392·26-s − 0.192·27-s + 1.85·29-s + 1.43·31-s + 0.176·32-s + 0.696·33-s − 1.02·34-s + 1/6·36-s − 0.328·37-s + 0.320·39-s + 0.312·41-s − 1.21·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(7350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{7350} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(1\)
Selberg data  =  \((2,\ 7350,\ (\ :1/2),\ -1)\)
\(L(1)\)  \(=\)  \(0\)
\(L(\frac12)\)  \(=\)  \(0\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.29527772193963476846365395682, −6.74553580824364922111766803824, −6.19274327191855656031230582072, −5.20857917839481535064914460677, −4.81913380955089112048934255178, −4.27105746059346910146373623514, −2.90278320711911551560660579265, −2.62440710274738908314805266739, −1.31092161404451362615182061580, 0, 1.31092161404451362615182061580, 2.62440710274738908314805266739, 2.90278320711911551560660579265, 4.27105746059346910146373623514, 4.81913380955089112048934255178, 5.20857917839481535064914460677, 6.19274327191855656031230582072, 6.74553580824364922111766803824, 7.29527772193963476846365395682

Graph of the $Z$-function along the critical line