Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7^{2} $
Sign $1$
Motivic weight 3
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 4.23·2-s − 3·3-s + 9.94·4-s + 5·5-s + 12.7·6-s − 8.23·8-s + 9·9-s − 21.1·10-s − 41.5·11-s − 29.8·12-s − 88.9·13-s − 15·15-s − 44.6·16-s + 120.·17-s − 38.1·18-s + 112.·19-s + 49.7·20-s + 175.·22-s − 115.·23-s + 24.7·24-s + 25·25-s + 376.·26-s − 27·27-s − 144.·29-s + 63.5·30-s + 258.·31-s + 255.·32-s + ⋯
L(s)  = 1  − 1.49·2-s − 0.577·3-s + 1.24·4-s + 0.447·5-s + 0.864·6-s − 0.363·8-s + 0.333·9-s − 0.669·10-s − 1.13·11-s − 0.717·12-s − 1.89·13-s − 0.258·15-s − 0.697·16-s + 1.71·17-s − 0.499·18-s + 1.35·19-s + 0.555·20-s + 1.70·22-s − 1.04·23-s + 0.210·24-s + 0.200·25-s + 2.84·26-s − 0.192·27-s − 0.927·29-s + 0.386·30-s + 1.49·31-s + 1.40·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(3\)
character  :  $\chi_{735} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 735,\ (\ :3/2),\ 1)\)
\(L(2)\)  \(\approx\)  \(0.5093333167\)
\(L(\frac12)\)  \(\approx\)  \(0.5093333167\)
\(L(\frac{5}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 - 5T \)
7 \( 1 \)
good2 \( 1 + 4.23T + 8T^{2} \)
11 \( 1 + 41.5T + 1.33e3T^{2} \)
13 \( 1 + 88.9T + 2.19e3T^{2} \)
17 \( 1 - 120.T + 4.91e3T^{2} \)
19 \( 1 - 112.T + 6.85e3T^{2} \)
23 \( 1 + 115.T + 1.21e4T^{2} \)
29 \( 1 + 144.T + 2.43e4T^{2} \)
31 \( 1 - 258.T + 2.97e4T^{2} \)
37 \( 1 - 48.3T + 5.06e4T^{2} \)
41 \( 1 + 200.T + 6.89e4T^{2} \)
43 \( 1 + 218.T + 7.95e4T^{2} \)
47 \( 1 + 575.T + 1.03e5T^{2} \)
53 \( 1 + 184.T + 1.48e5T^{2} \)
59 \( 1 - 151.T + 2.05e5T^{2} \)
61 \( 1 - 529.T + 2.26e5T^{2} \)
67 \( 1 - 1.28T + 3.00e5T^{2} \)
71 \( 1 + 61.4T + 3.57e5T^{2} \)
73 \( 1 + 484.T + 3.89e5T^{2} \)
79 \( 1 - 878.T + 4.93e5T^{2} \)
83 \( 1 + 491.T + 5.71e5T^{2} \)
89 \( 1 - 415.T + 7.04e5T^{2} \)
97 \( 1 - 1.03e3T + 9.12e5T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.01149648381207986324179482669, −9.532379861310031990354168600605, −8.027410583642715039046823903395, −7.72065265714192429750247547816, −6.80818752292857090370165280033, −5.52330467876259091114755036029, −4.88937369512422208330708617597, −2.96786120939360784488264558663, −1.79845890558410588897509505609, −0.51949000523997107205478924213, 0.51949000523997107205478924213, 1.79845890558410588897509505609, 2.96786120939360784488264558663, 4.88937369512422208330708617597, 5.52330467876259091114755036029, 6.80818752292857090370165280033, 7.72065265714192429750247547816, 8.027410583642715039046823903395, 9.532379861310031990354168600605, 10.01149648381207986324179482669

Graph of the $Z$-function along the critical line