Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7^{2} $
Sign $0.712 + 0.701i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.197 − 0.737i)2-s + (−0.965 + 0.258i)3-s + (1.22 + 0.708i)4-s + (2.23 − 0.0930i)5-s + 0.763i·6-s + (1.84 − 1.84i)8-s + (0.866 − 0.499i)9-s + (0.373 − 1.66i)10-s + (1.92 − 3.33i)11-s + (−1.36 − 0.366i)12-s + (−3.66 − 3.66i)13-s + (−2.13 + 0.668i)15-s + (0.419 + 0.726i)16-s + (0.545 + 2.03i)17-s + (−0.197 − 0.737i)18-s + (−0.0348 − 0.0604i)19-s + ⋯
L(s)  = 1  + (0.139 − 0.521i)2-s + (−0.557 + 0.149i)3-s + (0.613 + 0.354i)4-s + (0.999 − 0.0416i)5-s + 0.311i·6-s + (0.652 − 0.652i)8-s + (0.288 − 0.166i)9-s + (0.117 − 0.527i)10-s + (0.580 − 1.00i)11-s + (−0.394 − 0.105i)12-s + (−1.01 − 1.01i)13-s + (−0.550 + 0.172i)15-s + (0.104 + 0.181i)16-s + (0.132 + 0.493i)17-s + (−0.0465 − 0.173i)18-s + (−0.00800 − 0.0138i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
\( \varepsilon \)  =  $0.712 + 0.701i$
motivic weight  =  \(1\)
character  :  $\chi_{735} (472, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 735,\ (\ :1/2),\ 0.712 + 0.701i)\)
\(L(1)\)  \(\approx\)  \(1.84164 - 0.753980i\)
\(L(\frac12)\)  \(\approx\)  \(1.84164 - 0.753980i\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (0.965 - 0.258i)T \)
5 \( 1 + (-2.23 + 0.0930i)T \)
7 \( 1 \)
good2 \( 1 + (-0.197 + 0.737i)T + (-1.73 - i)T^{2} \)
11 \( 1 + (-1.92 + 3.33i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (3.66 + 3.66i)T + 13iT^{2} \)
17 \( 1 + (-0.545 - 2.03i)T + (-14.7 + 8.5i)T^{2} \)
19 \( 1 + (0.0348 + 0.0604i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.729 - 0.195i)T + (19.9 + 11.5i)T^{2} \)
29 \( 1 - 2.77iT - 29T^{2} \)
31 \( 1 + (-2.07 - 1.19i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-2.26 + 8.45i)T + (-32.0 - 18.5i)T^{2} \)
41 \( 1 - 8.68iT - 41T^{2} \)
43 \( 1 + (2.77 - 2.77i)T - 43iT^{2} \)
47 \( 1 + (7.50 + 2.00i)T + (40.7 + 23.5i)T^{2} \)
53 \( 1 + (-2.24 - 8.38i)T + (-45.8 + 26.5i)T^{2} \)
59 \( 1 + (-3.48 + 6.04i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-12.3 + 7.15i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (0.568 - 0.152i)T + (58.0 - 33.5i)T^{2} \)
71 \( 1 + 8.12T + 71T^{2} \)
73 \( 1 + (13.0 - 3.49i)T + (63.2 - 36.5i)T^{2} \)
79 \( 1 + (8.54 - 4.93i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + (-1.63 - 1.63i)T + 83iT^{2} \)
89 \( 1 + (-2.52 - 4.37i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-6.85 + 6.85i)T - 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.33508470461562609372142367871, −9.801883983264926214868785188225, −8.656200952962839387309993475286, −7.58515877088831705203663043468, −6.56781667396871952606469142454, −5.87003394175510870948025259647, −4.88929266333313755335404671159, −3.52939403207515561776094438595, −2.56120735855468550496628388287, −1.19783250988115545206397730368, 1.58715963260622480740015380394, 2.46478382727548272056704575414, 4.52035885891758627471556476514, 5.21365201791144235776841309920, 6.20310302556669647882314130199, 6.88212078078930308756279362817, 7.40011264480577411252028616482, 8.866944822921259697407409377926, 10.01465080288022133206548860066, 10.10597598216034539751370411335

Graph of the $Z$-function along the critical line