Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7^{2} $
Sign $0.326 - 0.945i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0611 + 0.228i)2-s + (−0.965 + 0.258i)3-s + (1.68 + 0.972i)4-s + (−1.04 − 1.97i)5-s − 0.236i·6-s + (−0.658 + 0.658i)8-s + (0.866 − 0.499i)9-s + (0.515 − 0.117i)10-s + (−1.99 + 3.45i)11-s + (−1.87 − 0.503i)12-s + (0.500 + 0.500i)13-s + (1.52 + 1.63i)15-s + (1.83 + 3.17i)16-s + (−0.614 − 2.29i)17-s + (0.0611 + 0.228i)18-s + (3.60 + 6.25i)19-s + ⋯
L(s)  = 1  + (−0.0432 + 0.161i)2-s + (−0.557 + 0.149i)3-s + (0.841 + 0.486i)4-s + (−0.467 − 0.884i)5-s − 0.0964i·6-s + (−0.232 + 0.232i)8-s + (0.288 − 0.166i)9-s + (0.162 − 0.0371i)10-s + (−0.600 + 1.04i)11-s + (−0.542 − 0.145i)12-s + (0.138 + 0.138i)13-s + (0.392 + 0.423i)15-s + (0.458 + 0.794i)16-s + (−0.148 − 0.556i)17-s + (0.0144 + 0.0537i)18-s + (0.828 + 1.43i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
\( \varepsilon \)  =  $0.326 - 0.945i$
motivic weight  =  \(1\)
character  :  $\chi_{735} (472, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 735,\ (\ :1/2),\ 0.326 - 0.945i)\)
\(L(1)\)  \(\approx\)  \(1.04313 + 0.743287i\)
\(L(\frac12)\)  \(\approx\)  \(1.04313 + 0.743287i\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (0.965 - 0.258i)T \)
5 \( 1 + (1.04 + 1.97i)T \)
7 \( 1 \)
good2 \( 1 + (0.0611 - 0.228i)T + (-1.73 - i)T^{2} \)
11 \( 1 + (1.99 - 3.45i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-0.500 - 0.500i)T + 13iT^{2} \)
17 \( 1 + (0.614 + 2.29i)T + (-14.7 + 8.5i)T^{2} \)
19 \( 1 + (-3.60 - 6.25i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-7.04 - 1.88i)T + (19.9 + 11.5i)T^{2} \)
29 \( 1 + 3.65iT - 29T^{2} \)
31 \( 1 + (-4.27 - 2.46i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-0.106 + 0.399i)T + (-32.0 - 18.5i)T^{2} \)
41 \( 1 - 7.63iT - 41T^{2} \)
43 \( 1 + (-3.65 + 3.65i)T - 43iT^{2} \)
47 \( 1 + (-0.417 - 0.111i)T + (40.7 + 23.5i)T^{2} \)
53 \( 1 + (-1.97 - 7.37i)T + (-45.8 + 26.5i)T^{2} \)
59 \( 1 + (3.05 - 5.29i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (6.15 - 3.55i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (1.28 - 0.345i)T + (58.0 - 33.5i)T^{2} \)
71 \( 1 - 1.19T + 71T^{2} \)
73 \( 1 + (1.88 - 0.506i)T + (63.2 - 36.5i)T^{2} \)
79 \( 1 + (-7.48 + 4.32i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + (11.9 + 11.9i)T + 83iT^{2} \)
89 \( 1 + (3.91 + 6.77i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-7.43 + 7.43i)T - 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.62263801356567573619308713957, −9.744609938845290508434288452124, −8.774407569094493686272836708323, −7.67632304156973237488630569953, −7.32084585825358018019685257402, −6.09838776831291076912958361965, −5.15972390682948729447164975863, −4.25592644435397167009102563087, −2.98424956711663954251033371863, −1.42904997497532151648415943705, 0.76689644521248334070844293384, 2.54803612431424195530976726907, 3.34343193746497530764649821880, 4.96069129667114327545522950063, 5.90124580432589901604990156865, 6.73892903796094593107785233670, 7.32126859286684703523226349260, 8.386818662320324414325086842287, 9.589758881122133067508623389293, 10.72114065678753754496899740391

Graph of the $Z$-function along the critical line