Properties

Label 2-731-731.67-c1-0-12
Degree $2$
Conductor $731$
Sign $-0.400 - 0.916i$
Analytic cond. $5.83706$
Root an. cond. $2.41600$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.16 + 1.45i)2-s + (0.00644 + 0.0427i)3-s + (−0.329 − 1.44i)4-s + (−0.740 − 1.08i)5-s + (−0.0698 − 0.0403i)6-s + (−2.40 + 1.39i)7-s + (−0.869 − 0.418i)8-s + (2.86 − 0.883i)9-s + (2.44 + 0.183i)10-s + (3.09 + 0.705i)11-s + (0.0596 − 0.0234i)12-s + (−0.0558 − 0.744i)13-s + (0.773 − 5.13i)14-s + (0.0416 − 0.0386i)15-s + (4.29 − 2.06i)16-s + (4.07 + 0.658i)17-s + ⋯
L(s)  = 1  + (−0.822 + 1.03i)2-s + (0.00371 + 0.0246i)3-s + (−0.164 − 0.722i)4-s + (−0.331 − 0.485i)5-s + (−0.0285 − 0.0164i)6-s + (−0.910 + 0.525i)7-s + (−0.307 − 0.148i)8-s + (0.954 − 0.294i)9-s + (0.773 + 0.0579i)10-s + (0.932 + 0.212i)11-s + (0.0172 − 0.00675i)12-s + (−0.0154 − 0.206i)13-s + (0.206 − 1.37i)14-s + (0.0107 − 0.00998i)15-s + (1.07 − 0.517i)16-s + (0.987 + 0.159i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.400 - 0.916i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.400 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(731\)    =    \(17 \cdot 43\)
Sign: $-0.400 - 0.916i$
Analytic conductor: \(5.83706\)
Root analytic conductor: \(2.41600\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{731} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 731,\ (\ :1/2),\ -0.400 - 0.916i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.458376 + 0.700521i\)
\(L(\frac12)\) \(\approx\) \(0.458376 + 0.700521i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 + (-4.07 - 0.658i)T \)
43 \( 1 + (-5.04 - 4.19i)T \)
good2 \( 1 + (1.16 - 1.45i)T + (-0.445 - 1.94i)T^{2} \)
3 \( 1 + (-0.00644 - 0.0427i)T + (-2.86 + 0.884i)T^{2} \)
5 \( 1 + (0.740 + 1.08i)T + (-1.82 + 4.65i)T^{2} \)
7 \( 1 + (2.40 - 1.39i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + (-3.09 - 0.705i)T + (9.91 + 4.77i)T^{2} \)
13 \( 1 + (0.0558 + 0.744i)T + (-12.8 + 1.93i)T^{2} \)
19 \( 1 + (-1.37 - 0.423i)T + (15.6 + 10.7i)T^{2} \)
23 \( 1 + (5.99 - 6.45i)T + (-1.71 - 22.9i)T^{2} \)
29 \( 1 + (-0.105 + 0.700i)T + (-27.7 - 8.54i)T^{2} \)
31 \( 1 + (5.44 - 2.13i)T + (22.7 - 21.0i)T^{2} \)
37 \( 1 + (-6.51 - 3.76i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (-3.24 - 2.58i)T + (9.12 + 39.9i)T^{2} \)
47 \( 1 + (-1.72 - 7.55i)T + (-42.3 + 20.3i)T^{2} \)
53 \( 1 + (0.538 - 7.18i)T + (-52.4 - 7.89i)T^{2} \)
59 \( 1 + (2.64 - 1.27i)T + (36.7 - 46.1i)T^{2} \)
61 \( 1 + (-2.31 - 0.909i)T + (44.7 + 41.4i)T^{2} \)
67 \( 1 + (-12.0 - 3.70i)T + (55.3 + 37.7i)T^{2} \)
71 \( 1 + (8.87 + 9.56i)T + (-5.30 + 70.8i)T^{2} \)
73 \( 1 + (1.02 - 0.0768i)T + (72.1 - 10.8i)T^{2} \)
79 \( 1 + (-1.27 + 0.737i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + (12.8 - 1.94i)T + (79.3 - 24.4i)T^{2} \)
89 \( 1 + (5.72 - 0.862i)T + (85.0 - 26.2i)T^{2} \)
97 \( 1 + (-9.80 - 2.23i)T + (87.3 + 42.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06547193002769256502061081043, −9.562188006246488373482054319713, −9.028210090316924169524852569354, −7.905995307611376465712921899577, −7.38770001280446808878524608462, −6.31708591247802301820937931701, −5.78443007615485204254474886950, −4.26345423460360893277505841614, −3.25268019441973969050618288985, −1.16185845401150688579588009216, 0.70072562773543834303398894059, 2.09190956141215211167679885938, 3.40868101463692699984581664593, 4.06919062561090200549366766402, 5.79294456703198346360499732336, 6.83607830365412856823968671080, 7.56447409874413835468133164312, 8.688739425773410739358555588955, 9.649974979809210295548532018444, 10.03086031744521498231516151826

Graph of the $Z$-function along the critical line