Properties

Label 2-7232-1.1-c1-0-131
Degree $2$
Conductor $7232$
Sign $1$
Analytic cond. $57.7478$
Root an. cond. $7.59919$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.29·3-s + 2.49·5-s − 1.71·7-s + 7.84·9-s + 0.274·11-s − 1.36·13-s + 8.21·15-s − 0.775·17-s + 3.05·19-s − 5.64·21-s − 4.68·23-s + 1.22·25-s + 15.9·27-s − 2.07·29-s + 6.83·31-s + 0.904·33-s − 4.27·35-s + 8.13·37-s − 4.48·39-s + 5.05·41-s + 9.21·43-s + 19.5·45-s − 10.2·47-s − 4.06·49-s − 2.55·51-s + 3.29·53-s + 0.684·55-s + ⋯
L(s)  = 1  + 1.90·3-s + 1.11·5-s − 0.647·7-s + 2.61·9-s + 0.0827·11-s − 0.378·13-s + 2.12·15-s − 0.188·17-s + 0.700·19-s − 1.23·21-s − 0.977·23-s + 0.244·25-s + 3.06·27-s − 0.385·29-s + 1.22·31-s + 0.157·33-s − 0.722·35-s + 1.33·37-s − 0.718·39-s + 0.789·41-s + 1.40·43-s + 2.91·45-s − 1.49·47-s − 0.580·49-s − 0.357·51-s + 0.452·53-s + 0.0923·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7232\)    =    \(2^{6} \cdot 113\)
Sign: $1$
Analytic conductor: \(57.7478\)
Root analytic conductor: \(7.59919\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7232,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.331858931\)
\(L(\frac12)\) \(\approx\) \(5.331858931\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
113 \( 1 + T \)
good3 \( 1 - 3.29T + 3T^{2} \)
5 \( 1 - 2.49T + 5T^{2} \)
7 \( 1 + 1.71T + 7T^{2} \)
11 \( 1 - 0.274T + 11T^{2} \)
13 \( 1 + 1.36T + 13T^{2} \)
17 \( 1 + 0.775T + 17T^{2} \)
19 \( 1 - 3.05T + 19T^{2} \)
23 \( 1 + 4.68T + 23T^{2} \)
29 \( 1 + 2.07T + 29T^{2} \)
31 \( 1 - 6.83T + 31T^{2} \)
37 \( 1 - 8.13T + 37T^{2} \)
41 \( 1 - 5.05T + 41T^{2} \)
43 \( 1 - 9.21T + 43T^{2} \)
47 \( 1 + 10.2T + 47T^{2} \)
53 \( 1 - 3.29T + 53T^{2} \)
59 \( 1 + 6.09T + 59T^{2} \)
61 \( 1 - 9.20T + 61T^{2} \)
67 \( 1 - 13.5T + 67T^{2} \)
71 \( 1 + 14.6T + 71T^{2} \)
73 \( 1 - 12.2T + 73T^{2} \)
79 \( 1 - 9.20T + 79T^{2} \)
83 \( 1 + 0.0523T + 83T^{2} \)
89 \( 1 - 0.384T + 89T^{2} \)
97 \( 1 + 1.35T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.931151314481583992976928730774, −7.46498396838077914424975763481, −6.55080522867963260623093824553, −6.03695443832066076117283008586, −4.94585985417181400412772466844, −4.10770424643958765283325522114, −3.39101051247815367862721832344, −2.54945734986030922522443462387, −2.18695465023421442132197275315, −1.12919858059076101812811226443, 1.12919858059076101812811226443, 2.18695465023421442132197275315, 2.54945734986030922522443462387, 3.39101051247815367862721832344, 4.10770424643958765283325522114, 4.94585985417181400412772466844, 6.03695443832066076117283008586, 6.55080522867963260623093824553, 7.46498396838077914424975763481, 7.931151314481583992976928730774

Graph of the $Z$-function along the critical line