Properties

Label 2-85e2-1.1-c1-0-343
Degree $2$
Conductor $7225$
Sign $1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.38·2-s + 3.15·3-s + 3.69·4-s + 7.52·6-s − 0.219·7-s + 4.04·8-s + 6.95·9-s − 0.524·11-s + 11.6·12-s + 1.96·13-s − 0.524·14-s + 2.25·16-s + 16.5·18-s + 4·19-s − 0.693·21-s − 1.25·22-s + 0.372·23-s + 12.7·24-s + 4.69·26-s + 12.4·27-s − 0.812·28-s − 7.00·29-s − 2.92·31-s − 2.69·32-s − 1.65·33-s + 25.6·36-s + 5.71·37-s + ⋯
L(s)  = 1  + 1.68·2-s + 1.82·3-s + 1.84·4-s + 3.07·6-s − 0.0831·7-s + 1.42·8-s + 2.31·9-s − 0.158·11-s + 3.36·12-s + 0.545·13-s − 0.140·14-s + 0.564·16-s + 3.90·18-s + 0.917·19-s − 0.151·21-s − 0.267·22-s + 0.0777·23-s + 2.60·24-s + 0.920·26-s + 2.39·27-s − 0.153·28-s − 1.30·29-s − 0.524·31-s − 0.476·32-s − 0.288·33-s + 4.27·36-s + 0.939·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(11.83978360\)
\(L(\frac12)\) \(\approx\) \(11.83978360\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 - 2.38T + 2T^{2} \)
3 \( 1 - 3.15T + 3T^{2} \)
7 \( 1 + 0.219T + 7T^{2} \)
11 \( 1 + 0.524T + 11T^{2} \)
13 \( 1 - 1.96T + 13T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 0.372T + 23T^{2} \)
29 \( 1 + 7.00T + 29T^{2} \)
31 \( 1 + 2.92T + 31T^{2} \)
37 \( 1 - 5.71T + 37T^{2} \)
41 \( 1 - 0.797T + 41T^{2} \)
43 \( 1 + 2.49T + 43T^{2} \)
47 \( 1 - 6.73T + 47T^{2} \)
53 \( 1 + 5.92T + 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 5.65T + 61T^{2} \)
67 \( 1 - 11.5T + 67T^{2} \)
71 \( 1 - 7.16T + 71T^{2} \)
73 \( 1 - 1.18T + 73T^{2} \)
79 \( 1 + 6.73T + 79T^{2} \)
83 \( 1 + 6.11T + 83T^{2} \)
89 \( 1 - 15.9T + 89T^{2} \)
97 \( 1 + 9.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76306721342517232646733874169, −7.22638747339993643161256467745, −6.51027853843554156942855868698, −5.63752796777087701024921695056, −4.91395520911893385159438043489, −4.01507452199338953154732471290, −3.63073600550792145683244077420, −2.96037581184454504088304889253, −2.30510210110262100409794332477, −1.45153724093597613979517661278, 1.45153724093597613979517661278, 2.30510210110262100409794332477, 2.96037581184454504088304889253, 3.63073600550792145683244077420, 4.01507452199338953154732471290, 4.91395520911893385159438043489, 5.63752796777087701024921695056, 6.51027853843554156942855868698, 7.22638747339993643161256467745, 7.76306721342517232646733874169

Graph of the $Z$-function along the critical line