Properties

Label 24-85e24-1.1-c1e12-0-1
Degree $24$
Conductor $2.023\times 10^{46}$
Sign $1$
Analytic cond. $1.35950\times 10^{21}$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·4-s − 4·9-s + 13·16-s + 48·19-s + 24·36-s − 56·49-s + 72·59-s − 20·64-s − 288·76-s + 2·81-s − 16·89-s − 8·101-s − 68·121-s + 127-s + 131-s + 137-s + 139-s − 52·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 112·169-s − 192·171-s + 173-s + 179-s + ⋯
L(s)  = 1  − 3·4-s − 4/3·9-s + 13/4·16-s + 11.0·19-s + 4·36-s − 8·49-s + 9.37·59-s − 5/2·64-s − 33.0·76-s + 2/9·81-s − 1.69·89-s − 0.796·101-s − 6.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 4.33·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 8.61·169-s − 14.6·171-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{24} \cdot 17^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{24} \cdot 17^{24}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(5^{24} \cdot 17^{24}\)
Sign: $1$
Analytic conductor: \(1.35950\times 10^{21}\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 5^{24} \cdot 17^{24} ,\ ( \ : [1/2]^{12} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(9.240943699\)
\(L(\frac12)\) \(\approx\) \(9.240943699\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( ( 1 + 3 T^{2} + 7 T^{4} + 19 T^{6} + 7 p^{2} T^{8} + 3 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
3 \( ( 1 + 2 T^{2} + 5 T^{4} + 10 p T^{6} + 5 p^{2} T^{8} + 2 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
7 \( ( 1 + 4 p T^{2} + 55 p T^{4} + 3330 T^{6} + 55 p^{3} T^{8} + 4 p^{5} T^{10} + p^{6} T^{12} )^{2} \)
11 \( ( 1 + 34 T^{2} + 423 T^{4} + 3738 T^{6} + 423 p^{2} T^{8} + 34 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
13 \( ( 1 + 56 T^{2} + 1487 T^{4} + 24028 T^{6} + 1487 p^{2} T^{8} + 56 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
19 \( ( 1 - 4 T + p T^{2} )^{12} \)
23 \( ( 1 + 66 T^{2} + 1681 T^{4} + 31782 T^{6} + 1681 p^{2} T^{8} + 66 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
29 \( ( 1 + 80 T^{2} + 3963 T^{4} + 141760 T^{6} + 3963 p^{2} T^{8} + 80 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
31 \( ( 1 + 120 T^{2} + 7483 T^{4} + 286390 T^{6} + 7483 p^{2} T^{8} + 120 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
37 \( ( 1 + 184 T^{2} + 15091 T^{4} + 714048 T^{6} + 15091 p^{2} T^{8} + 184 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
41 \( ( 1 + 94 T^{2} + 4463 T^{4} + 185188 T^{6} + 4463 p^{2} T^{8} + 94 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
43 \( ( 1 + 192 T^{2} + 16987 T^{4} + 908436 T^{6} + 16987 p^{2} T^{8} + 192 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
47 \( ( 1 + 200 T^{2} + 19687 T^{4} + 1160700 T^{6} + 19687 p^{2} T^{8} + 200 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
53 \( ( 1 + 162 T^{2} + 16447 T^{4} + 1020796 T^{6} + 16447 p^{2} T^{8} + 162 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
59 \( ( 1 - 6 T + p T^{2} )^{12} \)
61 \( ( 1 + 90 T^{2} + p^{2} T^{4} )^{6} \)
67 \( ( 1 + 188 T^{2} + 21487 T^{4} + 1699284 T^{6} + 21487 p^{2} T^{8} + 188 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
71 \( ( 1 + 294 T^{2} + 42523 T^{4} + 3776858 T^{6} + 42523 p^{2} T^{8} + 294 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
73 \( ( 1 + 286 T^{2} + 36127 T^{4} + 3003876 T^{6} + 36127 p^{2} T^{8} + 286 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
79 \( ( 1 + 300 T^{2} + 46983 T^{4} + 4550550 T^{6} + 46983 p^{2} T^{8} + 300 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
83 \( ( 1 + 440 T^{2} + 84927 T^{4} + 9176220 T^{6} + 84927 p^{2} T^{8} + 440 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
89 \( ( 1 + 4 T + 47 T^{2} - 878 T^{3} + 47 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} )^{4} \)
97 \( ( 1 + 64 T^{2} + 19851 T^{4} + 827088 T^{6} + 19851 p^{2} T^{8} + 64 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.30510210110262100409794332477, −2.29651837243719190624755209784, −2.10708300577847334162384367574, −2.03605495934795650364679780271, −1.93571347396201792911691822694, −1.81848437412217820714349530520, −1.73743215092382650266916465921, −1.72124512476517175309303494084, −1.67837862507464272989938044452, −1.51866301601796093418260807194, −1.45153724093597613979517661278, −1.41905982344363651498736918882, −1.33173619821029701821130344293, −1.27050768474801202204607965892, −1.00414958506121348175488206530, −0.935498091043930806611411516855, −0.881486303552853429381122411462, −0.855284509943932983493051417777, −0.807018567883485157409996510420, −0.54589744580402689748021805651, −0.52773156622842347624090280356, −0.48007195547037886556522388607, −0.43769093035855149116036977311, −0.37359966226559406806715464679, −0.089898234606209017699545171593, 0.089898234606209017699545171593, 0.37359966226559406806715464679, 0.43769093035855149116036977311, 0.48007195547037886556522388607, 0.52773156622842347624090280356, 0.54589744580402689748021805651, 0.807018567883485157409996510420, 0.855284509943932983493051417777, 0.881486303552853429381122411462, 0.935498091043930806611411516855, 1.00414958506121348175488206530, 1.27050768474801202204607965892, 1.33173619821029701821130344293, 1.41905982344363651498736918882, 1.45153724093597613979517661278, 1.51866301601796093418260807194, 1.67837862507464272989938044452, 1.72124512476517175309303494084, 1.73743215092382650266916465921, 1.81848437412217820714349530520, 1.93571347396201792911691822694, 2.03605495934795650364679780271, 2.10708300577847334162384367574, 2.29651837243719190624755209784, 2.30510210110262100409794332477

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.