Properties

Label 2-722-1.1-c5-0-63
Degree $2$
Conductor $722$
Sign $1$
Analytic cond. $115.797$
Root an. cond. $10.7609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 1.13·3-s + 16·4-s + 11.4·5-s − 4.52·6-s + 15.4·7-s + 64·8-s − 241.·9-s + 45.6·10-s + 596.·11-s − 18.0·12-s + 1.01e3·13-s + 61.9·14-s − 12.9·15-s + 256·16-s + 260.·17-s − 966.·18-s + 182.·20-s − 17.5·21-s + 2.38e3·22-s + 188.·23-s − 72.3·24-s − 2.99e3·25-s + 4.07e3·26-s + 548.·27-s + 247.·28-s − 2.99e3·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.0725·3-s + 0.5·4-s + 0.204·5-s − 0.0513·6-s + 0.119·7-s + 0.353·8-s − 0.994·9-s + 0.144·10-s + 1.48·11-s − 0.0362·12-s + 1.67·13-s + 0.0844·14-s − 0.0148·15-s + 0.250·16-s + 0.218·17-s − 0.703·18-s + 0.102·20-s − 0.00866·21-s + 1.05·22-s + 0.0744·23-s − 0.0256·24-s − 0.958·25-s + 1.18·26-s + 0.144·27-s + 0.0597·28-s − 0.662·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(115.797\)
Root analytic conductor: \(10.7609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.281005605\)
\(L(\frac12)\) \(\approx\) \(4.281005605\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
19 \( 1 \)
good3 \( 1 + 1.13T + 243T^{2} \)
5 \( 1 - 11.4T + 3.12e3T^{2} \)
7 \( 1 - 15.4T + 1.68e4T^{2} \)
11 \( 1 - 596.T + 1.61e5T^{2} \)
13 \( 1 - 1.01e3T + 3.71e5T^{2} \)
17 \( 1 - 260.T + 1.41e6T^{2} \)
23 \( 1 - 188.T + 6.43e6T^{2} \)
29 \( 1 + 2.99e3T + 2.05e7T^{2} \)
31 \( 1 - 4.88e3T + 2.86e7T^{2} \)
37 \( 1 - 3.79e3T + 6.93e7T^{2} \)
41 \( 1 + 1.75e4T + 1.15e8T^{2} \)
43 \( 1 - 3.60e3T + 1.47e8T^{2} \)
47 \( 1 - 1.26e4T + 2.29e8T^{2} \)
53 \( 1 + 6.44e3T + 4.18e8T^{2} \)
59 \( 1 + 1.47e3T + 7.14e8T^{2} \)
61 \( 1 - 3.48e4T + 8.44e8T^{2} \)
67 \( 1 - 5.26e4T + 1.35e9T^{2} \)
71 \( 1 + 2.58e3T + 1.80e9T^{2} \)
73 \( 1 - 2.26e4T + 2.07e9T^{2} \)
79 \( 1 - 3.85e4T + 3.07e9T^{2} \)
83 \( 1 - 9.01e4T + 3.93e9T^{2} \)
89 \( 1 - 8.95e4T + 5.58e9T^{2} \)
97 \( 1 + 1.34e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.603010638276193154400220657201, −8.739679582412482880451366093125, −7.980383182502374001836037477510, −6.58151646385115853990077748256, −6.15161352982545803304302245357, −5.24796886020157581707642596976, −3.96745075982707235273303308473, −3.36981848808339918890910865663, −1.96976577121849921473729815242, −0.912117758359545397154777813576, 0.912117758359545397154777813576, 1.96976577121849921473729815242, 3.36981848808339918890910865663, 3.96745075982707235273303308473, 5.24796886020157581707642596976, 6.15161352982545803304302245357, 6.58151646385115853990077748256, 7.980383182502374001836037477510, 8.739679582412482880451366093125, 9.603010638276193154400220657201

Graph of the $Z$-function along the critical line