Properties

Label 2-722-1.1-c5-0-48
Degree $2$
Conductor $722$
Sign $1$
Analytic cond. $115.797$
Root an. cond. $10.7609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 25.3·3-s + 16·4-s − 93.4·5-s + 101.·6-s − 182.·7-s + 64·8-s + 402.·9-s − 373.·10-s + 397.·11-s + 406.·12-s − 690.·13-s − 728.·14-s − 2.37e3·15-s + 256·16-s + 1.23e3·17-s + 1.60e3·18-s − 1.49e3·20-s − 4.62e3·21-s + 1.59e3·22-s + 281.·23-s + 1.62e3·24-s + 5.60e3·25-s − 2.76e3·26-s + 4.03e3·27-s − 2.91e3·28-s + 4.33e3·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.62·3-s + 0.5·4-s − 1.67·5-s + 1.15·6-s − 1.40·7-s + 0.353·8-s + 1.65·9-s − 1.18·10-s + 0.991·11-s + 0.814·12-s − 1.13·13-s − 0.993·14-s − 2.72·15-s + 0.250·16-s + 1.03·17-s + 1.16·18-s − 0.835·20-s − 2.28·21-s + 0.701·22-s + 0.111·23-s + 0.576·24-s + 1.79·25-s − 0.801·26-s + 1.06·27-s − 0.702·28-s + 0.958·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(115.797\)
Root analytic conductor: \(10.7609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.186692761\)
\(L(\frac12)\) \(\approx\) \(4.186692761\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
19 \( 1 \)
good3 \( 1 - 25.3T + 243T^{2} \)
5 \( 1 + 93.4T + 3.12e3T^{2} \)
7 \( 1 + 182.T + 1.68e4T^{2} \)
11 \( 1 - 397.T + 1.61e5T^{2} \)
13 \( 1 + 690.T + 3.71e5T^{2} \)
17 \( 1 - 1.23e3T + 1.41e6T^{2} \)
23 \( 1 - 281.T + 6.43e6T^{2} \)
29 \( 1 - 4.33e3T + 2.05e7T^{2} \)
31 \( 1 - 2.68e3T + 2.86e7T^{2} \)
37 \( 1 + 3.85e3T + 6.93e7T^{2} \)
41 \( 1 - 1.95e4T + 1.15e8T^{2} \)
43 \( 1 + 371.T + 1.47e8T^{2} \)
47 \( 1 - 1.35e4T + 2.29e8T^{2} \)
53 \( 1 - 5.62e3T + 4.18e8T^{2} \)
59 \( 1 + 3.00e4T + 7.14e8T^{2} \)
61 \( 1 - 2.21e3T + 8.44e8T^{2} \)
67 \( 1 - 266.T + 1.35e9T^{2} \)
71 \( 1 - 2.22e4T + 1.80e9T^{2} \)
73 \( 1 - 5.56e4T + 2.07e9T^{2} \)
79 \( 1 + 5.65e4T + 3.07e9T^{2} \)
83 \( 1 - 8.51e4T + 3.93e9T^{2} \)
89 \( 1 - 2.16e4T + 5.58e9T^{2} \)
97 \( 1 - 1.11e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.505318454558723083916455309285, −8.744128433052460818926000719769, −7.70243790269577853822157270365, −7.30610536224631967498849582463, −6.34309024409472958623862496523, −4.64201304268468698527083043841, −3.78854107368533472463290452419, −3.30054700255248382263211941699, −2.53241832300229185425551750697, −0.78176344917230869575948554531, 0.78176344917230869575948554531, 2.53241832300229185425551750697, 3.30054700255248382263211941699, 3.78854107368533472463290452419, 4.64201304268468698527083043841, 6.34309024409472958623862496523, 7.30610536224631967498849582463, 7.70243790269577853822157270365, 8.744128433052460818926000719769, 9.505318454558723083916455309285

Graph of the $Z$-function along the critical line