Properties

Label 2-722-1.1-c5-0-29
Degree $2$
Conductor $722$
Sign $1$
Analytic cond. $115.797$
Root an. cond. $10.7609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 1.13·3-s + 16·4-s + 11.4·5-s − 4.52·6-s + 15.4·7-s − 64·8-s − 241.·9-s − 45.6·10-s + 596.·11-s + 18.0·12-s − 1.01e3·13-s − 61.9·14-s + 12.9·15-s + 256·16-s + 260.·17-s + 966.·18-s + 182.·20-s + 17.5·21-s − 2.38e3·22-s + 188.·23-s − 72.3·24-s − 2.99e3·25-s + 4.07e3·26-s − 548.·27-s + 247.·28-s + 2.99e3·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.0725·3-s + 0.5·4-s + 0.204·5-s − 0.0513·6-s + 0.119·7-s − 0.353·8-s − 0.994·9-s − 0.144·10-s + 1.48·11-s + 0.0362·12-s − 1.67·13-s − 0.0844·14-s + 0.0148·15-s + 0.250·16-s + 0.218·17-s + 0.703·18-s + 0.102·20-s + 0.00866·21-s − 1.05·22-s + 0.0744·23-s − 0.0256·24-s − 0.958·25-s + 1.18·26-s − 0.144·27-s + 0.0597·28-s + 0.662·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(115.797\)
Root analytic conductor: \(10.7609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.259260172\)
\(L(\frac12)\) \(\approx\) \(1.259260172\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
19 \( 1 \)
good3 \( 1 - 1.13T + 243T^{2} \)
5 \( 1 - 11.4T + 3.12e3T^{2} \)
7 \( 1 - 15.4T + 1.68e4T^{2} \)
11 \( 1 - 596.T + 1.61e5T^{2} \)
13 \( 1 + 1.01e3T + 3.71e5T^{2} \)
17 \( 1 - 260.T + 1.41e6T^{2} \)
23 \( 1 - 188.T + 6.43e6T^{2} \)
29 \( 1 - 2.99e3T + 2.05e7T^{2} \)
31 \( 1 + 4.88e3T + 2.86e7T^{2} \)
37 \( 1 + 3.79e3T + 6.93e7T^{2} \)
41 \( 1 - 1.75e4T + 1.15e8T^{2} \)
43 \( 1 - 3.60e3T + 1.47e8T^{2} \)
47 \( 1 - 1.26e4T + 2.29e8T^{2} \)
53 \( 1 - 6.44e3T + 4.18e8T^{2} \)
59 \( 1 - 1.47e3T + 7.14e8T^{2} \)
61 \( 1 - 3.48e4T + 8.44e8T^{2} \)
67 \( 1 + 5.26e4T + 1.35e9T^{2} \)
71 \( 1 - 2.58e3T + 1.80e9T^{2} \)
73 \( 1 - 2.26e4T + 2.07e9T^{2} \)
79 \( 1 + 3.85e4T + 3.07e9T^{2} \)
83 \( 1 - 9.01e4T + 3.93e9T^{2} \)
89 \( 1 + 8.95e4T + 5.58e9T^{2} \)
97 \( 1 - 1.34e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.436935720936224164146628506682, −9.017136713752799902210016655609, −7.954217661836273955795430079282, −7.17045492817408737465434885922, −6.22686758794191592801105071214, −5.32491841692444091371159377472, −4.05218998036047267241456591381, −2.81085786411749520123139647950, −1.85886538696157878679773638084, −0.56881307686302487000255717933, 0.56881307686302487000255717933, 1.85886538696157878679773638084, 2.81085786411749520123139647950, 4.05218998036047267241456591381, 5.32491841692444091371159377472, 6.22686758794191592801105071214, 7.17045492817408737465434885922, 7.954217661836273955795430079282, 9.017136713752799902210016655609, 9.436935720936224164146628506682

Graph of the $Z$-function along the critical line