Properties

Label 2-722-1.1-c5-0-18
Degree $2$
Conductor $722$
Sign $1$
Analytic cond. $115.797$
Root an. cond. $10.7609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 1.16·3-s + 16·4-s − 65.1·5-s + 4.66·6-s + 94.5·7-s − 64·8-s − 241.·9-s + 260.·10-s − 458.·11-s − 18.6·12-s + 984.·13-s − 378.·14-s + 75.9·15-s + 256·16-s + 2.12e3·17-s + 966.·18-s − 1.04e3·20-s − 110.·21-s + 1.83e3·22-s − 3.84e3·23-s + 74.6·24-s + 1.11e3·25-s − 3.93e3·26-s + 565.·27-s + 1.51e3·28-s − 7.33e3·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.0747·3-s + 0.5·4-s − 1.16·5-s + 0.0528·6-s + 0.729·7-s − 0.353·8-s − 0.994·9-s + 0.823·10-s − 1.14·11-s − 0.0373·12-s + 1.61·13-s − 0.515·14-s + 0.0871·15-s + 0.250·16-s + 1.78·17-s + 0.703·18-s − 0.582·20-s − 0.0545·21-s + 0.807·22-s − 1.51·23-s + 0.0264·24-s + 0.357·25-s − 1.14·26-s + 0.149·27-s + 0.364·28-s − 1.61·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(115.797\)
Root analytic conductor: \(10.7609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.7502629058\)
\(L(\frac12)\) \(\approx\) \(0.7502629058\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
19 \( 1 \)
good3 \( 1 + 1.16T + 243T^{2} \)
5 \( 1 + 65.1T + 3.12e3T^{2} \)
7 \( 1 - 94.5T + 1.68e4T^{2} \)
11 \( 1 + 458.T + 1.61e5T^{2} \)
13 \( 1 - 984.T + 3.71e5T^{2} \)
17 \( 1 - 2.12e3T + 1.41e6T^{2} \)
23 \( 1 + 3.84e3T + 6.43e6T^{2} \)
29 \( 1 + 7.33e3T + 2.05e7T^{2} \)
31 \( 1 - 1.17e3T + 2.86e7T^{2} \)
37 \( 1 + 1.76e3T + 6.93e7T^{2} \)
41 \( 1 + 2.45e3T + 1.15e8T^{2} \)
43 \( 1 - 2.12e3T + 1.47e8T^{2} \)
47 \( 1 - 1.27e4T + 2.29e8T^{2} \)
53 \( 1 + 3.31e4T + 4.18e8T^{2} \)
59 \( 1 + 9.23e3T + 7.14e8T^{2} \)
61 \( 1 - 1.02e4T + 8.44e8T^{2} \)
67 \( 1 + 2.86e4T + 1.35e9T^{2} \)
71 \( 1 - 6.87e4T + 1.80e9T^{2} \)
73 \( 1 - 3.62e4T + 2.07e9T^{2} \)
79 \( 1 + 2.19e4T + 3.07e9T^{2} \)
83 \( 1 + 1.02e5T + 3.93e9T^{2} \)
89 \( 1 + 2.82e4T + 5.58e9T^{2} \)
97 \( 1 + 8.07e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.620216569435727317291138914446, −8.366884036593754829174673214981, −8.094561024360658678091631546366, −7.51992795049438677900059115006, −6.02068873452004681903142128084, −5.38046829694585352149734998490, −3.90940379311908864825349177029, −3.11585818030737825126762399128, −1.68411876397693270862213419986, −0.45309394340730011117603970042, 0.45309394340730011117603970042, 1.68411876397693270862213419986, 3.11585818030737825126762399128, 3.90940379311908864825349177029, 5.38046829694585352149734998490, 6.02068873452004681903142128084, 7.51992795049438677900059115006, 8.094561024360658678091631546366, 8.366884036593754829174673214981, 9.620216569435727317291138914446

Graph of the $Z$-function along the critical line