Properties

Label 2-722-1.1-c5-0-56
Degree $2$
Conductor $722$
Sign $1$
Analytic cond. $115.797$
Root an. cond. $10.7609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 10.4·3-s + 16·4-s + 95.5·5-s + 41.6·6-s + 232.·7-s − 64·8-s − 134.·9-s − 382.·10-s + 345.·11-s − 166.·12-s − 506.·13-s − 928.·14-s − 993.·15-s + 256·16-s − 797.·17-s + 539.·18-s + 1.52e3·20-s − 2.41e3·21-s − 1.38e3·22-s − 1.19e3·23-s + 665.·24-s + 6.00e3·25-s + 2.02e3·26-s + 3.92e3·27-s + 3.71e3·28-s + 425.·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.667·3-s + 0.5·4-s + 1.70·5-s + 0.471·6-s + 1.79·7-s − 0.353·8-s − 0.554·9-s − 1.20·10-s + 0.861·11-s − 0.333·12-s − 0.830·13-s − 1.26·14-s − 1.14·15-s + 0.250·16-s − 0.668·17-s + 0.392·18-s + 0.854·20-s − 1.19·21-s − 0.609·22-s − 0.469·23-s + 0.235·24-s + 1.92·25-s + 0.587·26-s + 1.03·27-s + 0.895·28-s + 0.0939·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(115.797\)
Root analytic conductor: \(10.7609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.203350198\)
\(L(\frac12)\) \(\approx\) \(2.203350198\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
19 \( 1 \)
good3 \( 1 + 10.4T + 243T^{2} \)
5 \( 1 - 95.5T + 3.12e3T^{2} \)
7 \( 1 - 232.T + 1.68e4T^{2} \)
11 \( 1 - 345.T + 1.61e5T^{2} \)
13 \( 1 + 506.T + 3.71e5T^{2} \)
17 \( 1 + 797.T + 1.41e6T^{2} \)
23 \( 1 + 1.19e3T + 6.43e6T^{2} \)
29 \( 1 - 425.T + 2.05e7T^{2} \)
31 \( 1 + 6.64e3T + 2.86e7T^{2} \)
37 \( 1 - 7.85e3T + 6.93e7T^{2} \)
41 \( 1 - 1.60e4T + 1.15e8T^{2} \)
43 \( 1 - 1.29e4T + 1.47e8T^{2} \)
47 \( 1 + 2.11e4T + 2.29e8T^{2} \)
53 \( 1 - 2.90e4T + 4.18e8T^{2} \)
59 \( 1 + 9.34e3T + 7.14e8T^{2} \)
61 \( 1 + 8.32e3T + 8.44e8T^{2} \)
67 \( 1 - 1.43e4T + 1.35e9T^{2} \)
71 \( 1 - 3.12e4T + 1.80e9T^{2} \)
73 \( 1 - 1.99e3T + 2.07e9T^{2} \)
79 \( 1 - 9.62e3T + 3.07e9T^{2} \)
83 \( 1 + 3.41e4T + 3.93e9T^{2} \)
89 \( 1 - 1.11e5T + 5.58e9T^{2} \)
97 \( 1 + 9.69e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.528990685999075854232429426846, −8.986156690947470781562118167288, −8.038852558169241461504449182063, −6.97445875926586055460375533673, −6.00364639260350287618542241093, −5.41465883421031532904795520635, −4.48786026714733622864546765851, −2.44226843903405922132043332830, −1.80651712697116547078638710878, −0.827479324483089002067236983150, 0.827479324483089002067236983150, 1.80651712697116547078638710878, 2.44226843903405922132043332830, 4.48786026714733622864546765851, 5.41465883421031532904795520635, 6.00364639260350287618542241093, 6.97445875926586055460375533673, 8.038852558169241461504449182063, 8.986156690947470781562118167288, 9.528990685999075854232429426846

Graph of the $Z$-function along the critical line