Properties

Label 2-722-1.1-c5-0-44
Degree $2$
Conductor $722$
Sign $1$
Analytic cond. $115.797$
Root an. cond. $10.7609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 11.0·3-s + 16·4-s − 52.2·5-s + 44.1·6-s + 215.·7-s − 64·8-s − 120.·9-s + 208.·10-s + 546.·11-s − 176.·12-s − 257.·13-s − 862.·14-s + 576.·15-s + 256·16-s + 1.89e3·17-s + 483.·18-s − 835.·20-s − 2.38e3·21-s − 2.18e3·22-s + 2.23e3·23-s + 706.·24-s − 398.·25-s + 1.03e3·26-s + 4.02e3·27-s + 3.45e3·28-s + 3.58e3·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.708·3-s + 0.5·4-s − 0.933·5-s + 0.501·6-s + 1.66·7-s − 0.353·8-s − 0.497·9-s + 0.660·10-s + 1.36·11-s − 0.354·12-s − 0.423·13-s − 1.17·14-s + 0.661·15-s + 0.250·16-s + 1.59·17-s + 0.352·18-s − 0.466·20-s − 1.17·21-s − 0.963·22-s + 0.880·23-s + 0.250·24-s − 0.127·25-s + 0.299·26-s + 1.06·27-s + 0.831·28-s + 0.791·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(115.797\)
Root analytic conductor: \(10.7609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.419555512\)
\(L(\frac12)\) \(\approx\) \(1.419555512\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
19 \( 1 \)
good3 \( 1 + 11.0T + 243T^{2} \)
5 \( 1 + 52.2T + 3.12e3T^{2} \)
7 \( 1 - 215.T + 1.68e4T^{2} \)
11 \( 1 - 546.T + 1.61e5T^{2} \)
13 \( 1 + 257.T + 3.71e5T^{2} \)
17 \( 1 - 1.89e3T + 1.41e6T^{2} \)
23 \( 1 - 2.23e3T + 6.43e6T^{2} \)
29 \( 1 - 3.58e3T + 2.05e7T^{2} \)
31 \( 1 - 8.44e3T + 2.86e7T^{2} \)
37 \( 1 - 3.25e3T + 6.93e7T^{2} \)
41 \( 1 + 8.96e3T + 1.15e8T^{2} \)
43 \( 1 - 1.80e4T + 1.47e8T^{2} \)
47 \( 1 + 2.02e4T + 2.29e8T^{2} \)
53 \( 1 + 3.59e3T + 4.18e8T^{2} \)
59 \( 1 - 3.06e3T + 7.14e8T^{2} \)
61 \( 1 + 5.77e3T + 8.44e8T^{2} \)
67 \( 1 + 3.86e4T + 1.35e9T^{2} \)
71 \( 1 + 4.25e4T + 1.80e9T^{2} \)
73 \( 1 - 4.43e4T + 2.07e9T^{2} \)
79 \( 1 + 1.10e4T + 3.07e9T^{2} \)
83 \( 1 + 2.15e4T + 3.93e9T^{2} \)
89 \( 1 - 6.14e4T + 5.58e9T^{2} \)
97 \( 1 + 1.57e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.650503640352761850886485723682, −8.538057744485376250936344211861, −8.050262277978061444347176173793, −7.23612076844614931932261913302, −6.19208454439431391820920641475, −5.14044652191775092491073049724, −4.30655826378156756109755332163, −2.99339275930673444391986860086, −1.40601273948562599713562337768, −0.73227629584693673288206640923, 0.73227629584693673288206640923, 1.40601273948562599713562337768, 2.99339275930673444391986860086, 4.30655826378156756109755332163, 5.14044652191775092491073049724, 6.19208454439431391820920641475, 7.23612076844614931932261913302, 8.050262277978061444347176173793, 8.538057744485376250936344211861, 9.650503640352761850886485723682

Graph of the $Z$-function along the critical line