Properties

Label 2-722-1.1-c5-0-3
Degree $2$
Conductor $722$
Sign $1$
Analytic cond. $115.797$
Root an. cond. $10.7609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 25.9·3-s + 16·4-s − 18.4·5-s + 103.·6-s − 122.·7-s − 64·8-s + 428.·9-s + 73.8·10-s − 71.1·11-s − 414.·12-s − 540.·13-s + 488.·14-s + 478.·15-s + 256·16-s + 221.·17-s − 1.71e3·18-s − 295.·20-s + 3.16e3·21-s + 284.·22-s + 4.11e3·23-s + 1.65e3·24-s − 2.78e3·25-s + 2.16e3·26-s − 4.79e3·27-s − 1.95e3·28-s − 5.55e3·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.66·3-s + 0.5·4-s − 0.330·5-s + 1.17·6-s − 0.941·7-s − 0.353·8-s + 1.76·9-s + 0.233·10-s − 0.177·11-s − 0.830·12-s − 0.886·13-s + 0.665·14-s + 0.548·15-s + 0.250·16-s + 0.185·17-s − 1.24·18-s − 0.165·20-s + 1.56·21-s + 0.125·22-s + 1.62·23-s + 0.587·24-s − 0.890·25-s + 0.627·26-s − 1.26·27-s − 0.470·28-s − 1.22·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(115.797\)
Root analytic conductor: \(10.7609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.04842459916\)
\(L(\frac12)\) \(\approx\) \(0.04842459916\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
19 \( 1 \)
good3 \( 1 + 25.9T + 243T^{2} \)
5 \( 1 + 18.4T + 3.12e3T^{2} \)
7 \( 1 + 122.T + 1.68e4T^{2} \)
11 \( 1 + 71.1T + 1.61e5T^{2} \)
13 \( 1 + 540.T + 3.71e5T^{2} \)
17 \( 1 - 221.T + 1.41e6T^{2} \)
23 \( 1 - 4.11e3T + 6.43e6T^{2} \)
29 \( 1 + 5.55e3T + 2.05e7T^{2} \)
31 \( 1 + 7.55e3T + 2.86e7T^{2} \)
37 \( 1 + 6.11e3T + 6.93e7T^{2} \)
41 \( 1 - 2.03e4T + 1.15e8T^{2} \)
43 \( 1 - 5.10e3T + 1.47e8T^{2} \)
47 \( 1 - 5.25e3T + 2.29e8T^{2} \)
53 \( 1 - 3.44e3T + 4.18e8T^{2} \)
59 \( 1 + 5.23e4T + 7.14e8T^{2} \)
61 \( 1 + 4.42e4T + 8.44e8T^{2} \)
67 \( 1 + 6.50e4T + 1.35e9T^{2} \)
71 \( 1 + 3.94e4T + 1.80e9T^{2} \)
73 \( 1 + 7.60e3T + 2.07e9T^{2} \)
79 \( 1 + 4.16e4T + 3.07e9T^{2} \)
83 \( 1 + 3.57e4T + 3.93e9T^{2} \)
89 \( 1 + 8.90e4T + 5.58e9T^{2} \)
97 \( 1 - 1.67e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.656041536610397464618405322763, −9.144044179975301906885111611017, −7.48059783451550668366435731972, −7.17967492900776576313317903170, −6.06701524339379539649630368701, −5.47152885985903921796014489928, −4.32548732695687081590615704462, −2.99064781104435781391588030963, −1.43794796342737020082405103729, −0.12948662070455469143263854553, 0.12948662070455469143263854553, 1.43794796342737020082405103729, 2.99064781104435781391588030963, 4.32548732695687081590615704462, 5.47152885985903921796014489928, 6.06701524339379539649630368701, 7.17967492900776576313317903170, 7.48059783451550668366435731972, 9.144044179975301906885111611017, 9.656041536610397464618405322763

Graph of the $Z$-function along the critical line