Properties

Label 2-722-1.1-c5-0-32
Degree $2$
Conductor $722$
Sign $1$
Analytic cond. $115.797$
Root an. cond. $10.7609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 27.3·3-s + 16·4-s − 91.1·5-s − 109.·6-s + 45.5·7-s − 64·8-s + 504.·9-s + 364.·10-s − 407.·11-s + 437.·12-s − 421.·13-s − 182.·14-s − 2.49e3·15-s + 256·16-s − 844.·17-s − 2.01e3·18-s − 1.45e3·20-s + 1.24e3·21-s + 1.63e3·22-s − 4.66e3·23-s − 1.74e3·24-s + 5.18e3·25-s + 1.68e3·26-s + 7.14e3·27-s + 729.·28-s + 3.99e3·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.75·3-s + 0.5·4-s − 1.63·5-s − 1.24·6-s + 0.351·7-s − 0.353·8-s + 2.07·9-s + 1.15·10-s − 1.01·11-s + 0.876·12-s − 0.691·13-s − 0.248·14-s − 2.85·15-s + 0.250·16-s − 0.708·17-s − 1.46·18-s − 0.815·20-s + 0.616·21-s + 0.718·22-s − 1.83·23-s − 0.620·24-s + 1.65·25-s + 0.488·26-s + 1.88·27-s + 0.175·28-s + 0.882·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(115.797\)
Root analytic conductor: \(10.7609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.742101567\)
\(L(\frac12)\) \(\approx\) \(1.742101567\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
19 \( 1 \)
good3 \( 1 - 27.3T + 243T^{2} \)
5 \( 1 + 91.1T + 3.12e3T^{2} \)
7 \( 1 - 45.5T + 1.68e4T^{2} \)
11 \( 1 + 407.T + 1.61e5T^{2} \)
13 \( 1 + 421.T + 3.71e5T^{2} \)
17 \( 1 + 844.T + 1.41e6T^{2} \)
23 \( 1 + 4.66e3T + 6.43e6T^{2} \)
29 \( 1 - 3.99e3T + 2.05e7T^{2} \)
31 \( 1 - 7.46e3T + 2.86e7T^{2} \)
37 \( 1 - 1.25e4T + 6.93e7T^{2} \)
41 \( 1 - 6.25e3T + 1.15e8T^{2} \)
43 \( 1 - 1.05e3T + 1.47e8T^{2} \)
47 \( 1 + 5.32e3T + 2.29e8T^{2} \)
53 \( 1 + 5.06e3T + 4.18e8T^{2} \)
59 \( 1 + 7.18e3T + 7.14e8T^{2} \)
61 \( 1 - 4.65e4T + 8.44e8T^{2} \)
67 \( 1 - 3.91e4T + 1.35e9T^{2} \)
71 \( 1 - 2.17e4T + 1.80e9T^{2} \)
73 \( 1 + 1.40e4T + 2.07e9T^{2} \)
79 \( 1 - 9.48e4T + 3.07e9T^{2} \)
83 \( 1 - 2.44e4T + 3.93e9T^{2} \)
89 \( 1 - 5.10e4T + 5.58e9T^{2} \)
97 \( 1 + 1.30e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.522245429634451943909857138138, −8.383034535636862394725333641917, −8.032704766421002195638603091911, −7.69551375572221430747265444840, −6.64237931014966548103714912497, −4.69076751532376651477196785640, −3.94609817494237505568619204391, −2.85854339880985455795614221122, −2.18200048842691166351894782278, −0.60271350534296704619816469924, 0.60271350534296704619816469924, 2.18200048842691166351894782278, 2.85854339880985455795614221122, 3.94609817494237505568619204391, 4.69076751532376651477196785640, 6.64237931014966548103714912497, 7.69551375572221430747265444840, 8.032704766421002195638603091911, 8.383034535636862394725333641917, 9.522245429634451943909857138138

Graph of the $Z$-function along the critical line