Properties

Label 8-722e4-1.1-c2e4-0-1
Degree $8$
Conductor $271737008656$
Sign $1$
Analytic cond. $149792.$
Root an. cond. $4.43543$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 4·5-s + 8·7-s + 26·9-s − 40·11-s + 12·16-s − 28·17-s + 16·20-s + 20·23-s − 90·25-s − 32·28-s − 32·35-s − 104·36-s − 76·43-s + 160·44-s − 104·45-s + 140·47-s − 108·49-s + 160·55-s − 148·61-s + 208·63-s − 32·64-s + 112·68-s − 196·73-s − 320·77-s − 48·80-s + 369·81-s + ⋯
L(s)  = 1  − 4-s − 4/5·5-s + 8/7·7-s + 26/9·9-s − 3.63·11-s + 3/4·16-s − 1.64·17-s + 4/5·20-s + 0.869·23-s − 3.59·25-s − 8/7·28-s − 0.914·35-s − 2.88·36-s − 1.76·43-s + 3.63·44-s − 2.31·45-s + 2.97·47-s − 2.20·49-s + 2.90·55-s − 2.42·61-s + 3.30·63-s − 1/2·64-s + 1.64·68-s − 2.68·73-s − 4.15·77-s − 3/5·80-s + 41/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 19^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 19^{8}\)
Sign: $1$
Analytic conductor: \(149792.\)
Root analytic conductor: \(4.43543\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 19^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7175418936\)
\(L(\frac12)\) \(\approx\) \(0.7175418936\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T^{2} )^{2} \)
19 \( 1 \)
good3$D_4\times C_2$ \( 1 - 26 T^{2} + 307 T^{4} - 26 p^{4} T^{6} + p^{8} T^{8} \)
5$C_2$ \( ( 1 + T + p^{2} T^{2} )^{4} \)
7$D_{4}$ \( ( 1 - 4 T + 78 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
11$D_{4}$ \( ( 1 + 20 T + 318 T^{2} + 20 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 382 T^{2} + 72003 T^{4} - 382 p^{4} T^{6} + p^{8} T^{8} \)
17$D_{4}$ \( ( 1 + 14 T + 603 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 - 10 T + 597 T^{2} - 10 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 - 1342 T^{2} + 923907 T^{4} - 1342 p^{4} T^{6} + p^{8} T^{8} \)
31$C_2^2$ \( ( 1 - 950 T^{2} + p^{4} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 4156 T^{2} + 8035302 T^{4} - 4156 p^{4} T^{6} + p^{8} T^{8} \)
41$D_4\times C_2$ \( 1 + 386 T^{2} + 5307747 T^{4} + 386 p^{4} T^{6} + p^{8} T^{8} \)
43$D_{4}$ \( ( 1 + 38 T + 885 T^{2} + 38 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 - 70 T + 3477 T^{2} - 70 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 1726 T^{2} + 13816227 T^{4} - 1726 p^{4} T^{6} + p^{8} T^{8} \)
59$D_4\times C_2$ \( 1 - 9274 T^{2} + 44455827 T^{4} - 9274 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 + 74 T + 7275 T^{2} + 74 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 346 T^{2} + 12803187 T^{4} - 346 p^{4} T^{6} + p^{8} T^{8} \)
71$D_4\times C_2$ \( 1 - 4234 T^{2} + 50248707 T^{4} - 4234 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 + 98 T + 6915 T^{2} + 98 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 20554 T^{2} + 178849347 T^{4} - 20554 p^{4} T^{6} + p^{8} T^{8} \)
83$D_{4}$ \( ( 1 + 32 T + 13818 T^{2} + 32 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 31534 T^{2} + 374081907 T^{4} - 31534 p^{4} T^{6} + p^{8} T^{8} \)
97$D_4\times C_2$ \( 1 + 1874 T^{2} + 172267827 T^{4} + 1874 p^{4} T^{6} + p^{8} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48268138577391442072908949248, −7.17560873093578800027824378347, −6.97064145008781681089415588150, −6.59138991880090852205105718477, −6.51609742379758545177083179368, −5.84290674813267589589922719877, −5.72048269293709133117201834305, −5.58590216623826268514161353615, −5.39911937220342951507239204231, −4.85986332375484930375101997917, −4.68157447173436949100346681069, −4.65361190657621217036803670537, −4.48892659030209703971524810850, −4.20406447630208634779163294602, −3.82325923405605806575322411178, −3.81238123437747049055135582912, −3.22019652850234187732438635556, −2.90197531166580453849065736813, −2.63547901292122259358084912359, −2.17957430998056915006776979044, −1.81457152382606896090577563121, −1.63494955449855115209803289089, −1.37343174383498841069561776729, −0.39541794064833733407490269052, −0.27107160892860222670693756454, 0.27107160892860222670693756454, 0.39541794064833733407490269052, 1.37343174383498841069561776729, 1.63494955449855115209803289089, 1.81457152382606896090577563121, 2.17957430998056915006776979044, 2.63547901292122259358084912359, 2.90197531166580453849065736813, 3.22019652850234187732438635556, 3.81238123437747049055135582912, 3.82325923405605806575322411178, 4.20406447630208634779163294602, 4.48892659030209703971524810850, 4.65361190657621217036803670537, 4.68157447173436949100346681069, 4.85986332375484930375101997917, 5.39911937220342951507239204231, 5.58590216623826268514161353615, 5.72048269293709133117201834305, 5.84290674813267589589922719877, 6.51609742379758545177083179368, 6.59138991880090852205105718477, 6.97064145008781681089415588150, 7.17560873093578800027824378347, 7.48268138577391442072908949248

Graph of the $Z$-function along the critical line