Properties

Label 2-722-19.6-c1-0-25
Degree $2$
Conductor $722$
Sign $-0.745 - 0.666i$
Analytic cond. $5.76519$
Root an. cond. $2.40108$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.766 − 0.642i)2-s + (−2.62 − 0.955i)3-s + (0.173 − 0.984i)4-s + (−0.407 − 2.30i)5-s + (−2.62 + 0.955i)6-s + (0.642 − 1.11i)7-s + (−0.500 − 0.866i)8-s + (3.68 + 3.08i)9-s + (−1.79 − 1.50i)10-s + (−2.87 − 4.98i)11-s + (−1.39 + 2.41i)12-s + (−0.285 + 0.104i)13-s + (−0.222 − 1.26i)14-s + (−1.13 + 6.45i)15-s + (−0.939 − 0.342i)16-s + (3.20 − 2.69i)17-s + ⋯
L(s)  = 1  + (0.541 − 0.454i)2-s + (−1.51 − 0.551i)3-s + (0.0868 − 0.492i)4-s + (−0.182 − 1.03i)5-s + (−1.07 + 0.390i)6-s + (0.242 − 0.420i)7-s + (−0.176 − 0.306i)8-s + (1.22 + 1.02i)9-s + (−0.567 − 0.476i)10-s + (−0.867 − 1.50i)11-s + (−0.403 + 0.698i)12-s + (−0.0793 + 0.0288i)13-s + (−0.0595 − 0.337i)14-s + (−0.293 + 1.66i)15-s + (−0.234 − 0.0855i)16-s + (0.777 − 0.652i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.745 - 0.666i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.745 - 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $-0.745 - 0.666i$
Analytic conductor: \(5.76519\)
Root analytic conductor: \(2.40108\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{722} (595, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :1/2),\ -0.745 - 0.666i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.270632 + 0.708146i\)
\(L(\frac12)\) \(\approx\) \(0.270632 + 0.708146i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.766 + 0.642i)T \)
19 \( 1 \)
good3 \( 1 + (2.62 + 0.955i)T + (2.29 + 1.92i)T^{2} \)
5 \( 1 + (0.407 + 2.30i)T + (-4.69 + 1.71i)T^{2} \)
7 \( 1 + (-0.642 + 1.11i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (2.87 + 4.98i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (0.285 - 0.104i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (-3.20 + 2.69i)T + (2.95 - 16.7i)T^{2} \)
23 \( 1 + (1.12 - 6.37i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (2.39 + 2.01i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (3.22 - 5.57i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 3.97T + 37T^{2} \)
41 \( 1 + (-4.71 - 1.71i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (0.171 + 0.974i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (3.36 + 2.82i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + (-0.571 + 3.24i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (-2.53 + 2.13i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (1.90 - 10.7i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (3.35 + 2.81i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (0.766 + 4.34i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-2.13 - 0.775i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (8.05 + 2.93i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (-4.88 + 8.45i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-14.1 + 5.15i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (-13.2 + 11.1i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33149334444409105146058118222, −9.111602064829413549647610064766, −7.971936012001238261829298538274, −7.13164994910213284676093180915, −5.81753087526124079389022810709, −5.44999772520499958050015472337, −4.66262978573702097743310315124, −3.32122371184360960390644173858, −1.40058078454827014993043454925, −0.41951470628759872093255244573, 2.37419795198683294371296796423, 3.86199473574418882927148244971, 4.82843207375318886508857588477, 5.51887277052974768446938332237, 6.39455230424425167555797124986, 7.15433015802997205907579011714, 7.995334112136121687277726478778, 9.520087258968443567947054596931, 10.48945421066757211860158792357, 10.76818701476180831221890447773

Graph of the $Z$-function along the critical line