Properties

Label 2-722-19.9-c1-0-26
Degree $2$
Conductor $722$
Sign $-0.565 + 0.824i$
Analytic cond. $5.76519$
Root an. cond. $2.40108$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 + 0.984i)2-s + (1.17 − 0.984i)3-s + (−0.939 + 0.342i)4-s + (−1.87 − 0.684i)5-s + (1.17 + 0.984i)6-s + (−1.34 + 2.33i)7-s + (−0.5 − 0.866i)8-s + (−0.113 + 0.642i)9-s + (0.347 − 1.96i)10-s + (−1.59 − 2.75i)11-s + (−0.766 + 1.32i)12-s + (−4.41 − 3.70i)13-s + (−2.53 − 0.921i)14-s + (−2.87 + 1.04i)15-s + (0.766 − 0.642i)16-s + (−1.13 − 6.41i)17-s + ⋯
L(s)  = 1  + (0.122 + 0.696i)2-s + (0.677 − 0.568i)3-s + (−0.469 + 0.171i)4-s + (−0.840 − 0.305i)5-s + (0.479 + 0.402i)6-s + (−0.509 + 0.882i)7-s + (−0.176 − 0.306i)8-s + (−0.0377 + 0.214i)9-s + (0.109 − 0.622i)10-s + (−0.480 − 0.831i)11-s + (−0.221 + 0.383i)12-s + (−1.22 − 1.02i)13-s + (−0.676 − 0.246i)14-s + (−0.743 + 0.270i)15-s + (0.191 − 0.160i)16-s + (−0.274 − 1.55i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.565 + 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.565 + 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $-0.565 + 0.824i$
Analytic conductor: \(5.76519\)
Root analytic conductor: \(2.40108\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{722} (389, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :1/2),\ -0.565 + 0.824i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.194697 - 0.369499i\)
\(L(\frac12)\) \(\approx\) \(0.194697 - 0.369499i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 - 0.984i)T \)
19 \( 1 \)
good3 \( 1 + (-1.17 + 0.984i)T + (0.520 - 2.95i)T^{2} \)
5 \( 1 + (1.87 + 0.684i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (1.34 - 2.33i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (1.59 + 2.75i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (4.41 + 3.70i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (1.13 + 6.41i)T + (-15.9 + 5.81i)T^{2} \)
23 \( 1 + (-0.652 + 0.237i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (0.490 - 2.78i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (1.22 - 2.12i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 4.36T + 37T^{2} \)
41 \( 1 + (0.266 - 0.223i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (5.69 + 2.07i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (-1.36 + 7.76i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + (7.71 - 2.80i)T + (40.6 - 34.0i)T^{2} \)
59 \( 1 + (-0.0996 - 0.565i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (2.75 - 1.00i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (0.860 - 4.88i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (-7.94 - 2.89i)T + (54.3 + 45.6i)T^{2} \)
73 \( 1 + (-12.0 + 10.1i)T + (12.6 - 71.8i)T^{2} \)
79 \( 1 + (6.94 - 5.82i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (4.23 - 7.34i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-5.92 - 4.97i)T + (15.4 + 87.6i)T^{2} \)
97 \( 1 + (0.0603 + 0.342i)T + (-91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.831771241216541821296913485214, −8.880179098025433695584760708582, −8.269086585269914639551134344367, −7.57323008712722479399771266845, −6.87366957717713393729129050236, −5.47550685527546180752164818441, −4.94323859567521483493931398414, −3.29147578667384449464571339826, −2.57175993283454399852336348925, −0.17872596496707226183241670003, 2.07860501360803805221682047096, 3.36535679394690600630186610188, 4.03151363832239569109410712648, 4.71837015058916641015303025900, 6.43001080515062826735042548991, 7.36574566203942824724041137587, 8.186936008590147552408669324745, 9.318023279479073764625880698208, 9.875566951213717638982368931800, 10.55328887192095007087624791511

Graph of the $Z$-function along the critical line