Properties

Label 2-722-19.4-c1-0-15
Degree $2$
Conductor $722$
Sign $0.527 - 0.849i$
Analytic cond. $5.76519$
Root an. cond. $2.40108$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.939 + 0.342i)2-s + (0.173 + 0.984i)3-s + (0.766 + 0.642i)4-s + (−0.173 + 0.984i)6-s + (0.5 − 0.866i)7-s + (0.500 + 0.866i)8-s + (1.87 − 0.684i)9-s + (3 + 5.19i)11-s + (−0.5 + 0.866i)12-s + (0.868 − 4.92i)13-s + (0.766 − 0.642i)14-s + (0.173 + 0.984i)16-s + (−2.81 − 1.02i)17-s + 2·18-s + (0.939 + 0.342i)21-s + (1.04 + 5.90i)22-s + ⋯
L(s)  = 1  + (0.664 + 0.241i)2-s + (0.100 + 0.568i)3-s + (0.383 + 0.321i)4-s + (−0.0708 + 0.402i)6-s + (0.188 − 0.327i)7-s + (0.176 + 0.306i)8-s + (0.626 − 0.228i)9-s + (0.904 + 1.56i)11-s + (−0.144 + 0.249i)12-s + (0.240 − 1.36i)13-s + (0.204 − 0.171i)14-s + (0.0434 + 0.246i)16-s + (−0.683 − 0.248i)17-s + 0.471·18-s + (0.205 + 0.0746i)21-s + (0.222 + 1.25i)22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.527 - 0.849i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.527 - 0.849i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $0.527 - 0.849i$
Analytic conductor: \(5.76519\)
Root analytic conductor: \(2.40108\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{722} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :1/2),\ 0.527 - 0.849i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.23951 + 1.24621i\)
\(L(\frac12)\) \(\approx\) \(2.23951 + 1.24621i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.939 - 0.342i)T \)
19 \( 1 \)
good3 \( 1 + (-0.173 - 0.984i)T + (-2.81 + 1.02i)T^{2} \)
5 \( 1 + (0.868 - 4.92i)T^{2} \)
7 \( 1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-3 - 5.19i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.868 + 4.92i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (2.81 + 1.02i)T + (13.0 + 10.9i)T^{2} \)
23 \( 1 + (-2.29 - 1.92i)T + (3.99 + 22.6i)T^{2} \)
29 \( 1 + (8.45 - 3.07i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (-6.12 + 5.14i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (36.0 - 30.2i)T^{2} \)
53 \( 1 + (2.29 + 1.92i)T + (9.20 + 52.1i)T^{2} \)
59 \( 1 + (8.45 + 3.07i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (7.66 + 6.42i)T + (10.5 + 60.0i)T^{2} \)
67 \( 1 + (4.69 - 1.71i)T + (51.3 - 43.0i)T^{2} \)
71 \( 1 + (4.59 - 3.85i)T + (12.3 - 69.9i)T^{2} \)
73 \( 1 + (1.21 + 6.89i)T + (-68.5 + 24.9i)T^{2} \)
79 \( 1 + (1.73 + 9.84i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (-3 + 5.19i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (2.08 - 11.8i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (-9.39 - 3.42i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60809234454249016194214761944, −9.637461529366752335236881423590, −9.054577461487803479211601364300, −7.52084976166429710729298934557, −7.22286667638008259855198378332, −5.99474502098089234579135791982, −4.89989448932821614647582959161, −4.19821164256336056053636932056, −3.30010251058060033451872534468, −1.67451830837371868014513434309, 1.31200864098846274265031601308, 2.43278765033373228012444590842, 3.83427279337972830970364107300, 4.58873909472711908625287774867, 6.04686995954062140125928422911, 6.47179989868807803321139707732, 7.51467459439590255493571707344, 8.644685570103900191559711166479, 9.259260296216109981607584093033, 10.54833784764028093750055139258

Graph of the $Z$-function along the critical line