# Properties

 Degree $2$ Conductor $722$ Sign $-0.692 + 0.721i$ Motivic weight $1$ Primitive yes Self-dual no Analytic rank $0$

# Learn more about

## Dirichlet series

 L(s)  = 1 + (−0.766 − 0.642i)2-s + (−0.939 + 0.342i)3-s + (0.173 + 0.984i)4-s + (−0.694 + 3.93i)5-s + (0.939 + 0.342i)6-s + (−1.5 − 2.59i)7-s + (0.500 − 0.866i)8-s + (−1.53 + 1.28i)9-s + (3.06 − 2.57i)10-s + (−1 + 1.73i)11-s + (−0.499 − 0.866i)12-s + (−0.939 − 0.342i)13-s + (−0.520 + 2.95i)14-s + (−0.694 − 3.93i)15-s + (−0.939 + 0.342i)16-s + (2.29 + 1.92i)17-s + ⋯
 L(s)  = 1 + (−0.541 − 0.454i)2-s + (−0.542 + 0.197i)3-s + (0.0868 + 0.492i)4-s + (−0.310 + 1.76i)5-s + (0.383 + 0.139i)6-s + (−0.566 − 0.981i)7-s + (0.176 − 0.306i)8-s + (−0.510 + 0.428i)9-s + (0.968 − 0.813i)10-s + (−0.301 + 0.522i)11-s + (−0.144 − 0.250i)12-s + (−0.260 − 0.0948i)13-s + (−0.139 + 0.789i)14-s + (−0.179 − 1.01i)15-s + (−0.234 + 0.0855i)16-s + (0.557 + 0.467i)17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.692 + 0.721i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.692 + 0.721i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$722$$    =    $$2 \cdot 19^{2}$$ Sign: $-0.692 + 0.721i$ Motivic weight: $$1$$ Character: $\chi_{722} (415, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 722,\ (\ :1/2),\ -0.692 + 0.721i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.0255783 - 0.0599641i$$ $$L(\frac12)$$ $$\approx$$ $$0.0255783 - 0.0599641i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (0.766 + 0.642i)T$$
19 $$1$$
good3 $$1 + (0.939 - 0.342i)T + (2.29 - 1.92i)T^{2}$$
5 $$1 + (0.694 - 3.93i)T + (-4.69 - 1.71i)T^{2}$$
7 $$1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2}$$
11 $$1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2}$$
13 $$1 + (0.939 + 0.342i)T + (9.95 + 8.35i)T^{2}$$
17 $$1 + (-2.29 - 1.92i)T + (2.95 + 16.7i)T^{2}$$
23 $$1 + (0.173 + 0.984i)T + (-21.6 + 7.86i)T^{2}$$
29 $$1 + (-3.83 + 3.21i)T + (5.03 - 28.5i)T^{2}$$
31 $$1 + (4 + 6.92i)T + (-15.5 + 26.8i)T^{2}$$
37 $$1 - 2T + 37T^{2}$$
41 $$1 + (7.51 - 2.73i)T + (31.4 - 26.3i)T^{2}$$
43 $$1 + (-0.694 + 3.93i)T + (-40.4 - 14.7i)T^{2}$$
47 $$1 + (-6.12 + 5.14i)T + (8.16 - 46.2i)T^{2}$$
53 $$1 + (-0.173 - 0.984i)T + (-49.8 + 18.1i)T^{2}$$
59 $$1 + (11.4 + 9.64i)T + (10.2 + 58.1i)T^{2}$$
61 $$1 + (-0.347 - 1.96i)T + (-57.3 + 20.8i)T^{2}$$
67 $$1 + (2.29 - 1.92i)T + (11.6 - 65.9i)T^{2}$$
71 $$1 + (0.347 - 1.96i)T + (-66.7 - 24.2i)T^{2}$$
73 $$1 + (8.45 - 3.07i)T + (55.9 - 46.9i)T^{2}$$
79 $$1 + (9.39 - 3.42i)T + (60.5 - 50.7i)T^{2}$$
83 $$1 + (-3 - 5.19i)T + (-41.5 + 71.8i)T^{2}$$
89 $$1 + (68.1 + 57.2i)T^{2}$$
97 $$1 + (-1.53 - 1.28i)T + (16.8 + 95.5i)T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−10.27220524978483852232087184085, −9.759652596163686693985900835750, −8.176919520529228865636645504063, −7.43865589774974124344822042769, −6.76707376370624722009347082490, −5.81919142140426388760559059716, −4.26829249353077784543512130388, −3.30805243101999857571337511118, −2.35459220916438817590796937151, −0.04662004402322542939171730073, 1.24288164526237256089342830280, 3.10573996021700404727701439850, 4.77918736764016040973335984865, 5.51038790679459080897304277447, 6.09383870462090113184152055314, 7.33941150893024973216001081455, 8.407848474687982473037327791890, 8.940665760035160260588928883283, 9.447460987651500883614459596638, 10.66746965965069453861414211771