Properties

Degree 2
Conductor $ 2 \cdot 19^{2} $
Sign $-0.321 + 0.946i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.499 − 0.866i)6-s − 7-s + 0.999·8-s + (1 − 1.73i)9-s − 6·11-s − 0.999·12-s + (2.5 − 4.33i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (−1.5 − 2.59i)17-s − 2·18-s + (−0.5 − 0.866i)21-s + (3 + 5.19i)22-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.204 − 0.353i)6-s − 0.377·7-s + 0.353·8-s + (0.333 − 0.577i)9-s − 1.80·11-s − 0.288·12-s + (0.693 − 1.20i)13-s + (0.133 + 0.231i)14-s + (−0.125 − 0.216i)16-s + (−0.363 − 0.630i)17-s − 0.471·18-s + (−0.109 − 0.188i)21-s + (0.639 + 1.10i)22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.321 + 0.946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.321 + 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(722\)    =    \(2 \cdot 19^{2}\)
\( \varepsilon \)  =  $-0.321 + 0.946i$
motivic weight  =  \(1\)
character  :  $\chi_{722} (653, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 722,\ (\ :1/2),\ -0.321 + 0.946i)\)
\(L(1)\)  \(\approx\)  \(0.556484 - 0.777036i\)
\(L(\frac12)\)  \(\approx\)  \(0.556484 - 0.777036i\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;19\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;19\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
19 \( 1 \)
good3 \( 1 + (-0.5 - 0.866i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (-2.5 + 4.33i)T^{2} \)
7 \( 1 + T + 7T^{2} \)
11 \( 1 + 6T + 11T^{2} \)
13 \( 1 + (-2.5 + 4.33i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \)
23 \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-4.5 + 7.79i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (4 + 6.92i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (1.5 - 2.59i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-4.5 - 7.79i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-2.5 + 4.33i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-3.5 - 6.06i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (5 + 8.66i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 6T + 83T^{2} \)
89 \( 1 + (6 - 10.3i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (5 + 8.66i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.22101133251579735860213114071, −9.546760410176431520553977692956, −8.419819136123545691116628041944, −7.942568995500605341179616020238, −6.69230721480135968216691032129, −5.50040037976405017813878689585, −4.45902863949864490936020962716, −3.28887938852658383790051091168, −2.56942305234563306728464640756, −0.54032630809861117031678362844, 1.61558824482515643800911368613, 2.88917259317035582843155482657, 4.47195322090585336419526387351, 5.36661437045520252495305862638, 6.57537934232554710442037647549, 7.11712316196877396218758258705, 8.239521637892575084687539446303, 8.537926150676000485622522402607, 9.796749249224507096433177692171, 10.53077602142962907183313860133

Graph of the $Z$-function along the critical line