Properties

Label 4-7200e2-1.1-c1e2-0-45
Degree $4$
Conductor $51840000$
Sign $1$
Analytic cond. $3305.36$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·11-s − 16·19-s − 4·29-s + 8·31-s + 20·41-s + 10·49-s + 4·61-s + 24·71-s + 16·79-s − 12·89-s − 28·101-s + 28·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 2.41·11-s − 3.67·19-s − 0.742·29-s + 1.43·31-s + 3.12·41-s + 10/7·49-s + 0.512·61-s + 2.84·71-s + 1.80·79-s − 1.27·89-s − 2.78·101-s + 2.68·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51840000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51840000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(51840000\)    =    \(2^{10} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(3305.36\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 51840000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.962812724\)
\(L(\frac12)\) \(\approx\) \(3.962812724\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.185989117148983439655265848516, −7.86340149941843290348118159285, −7.26759385787398314979198485766, −6.95438309295676997830431919735, −6.55858142983195531957121901233, −6.48584645820442027954098910832, −6.08669307083478761465946807948, −5.82091162209081564882910286702, −5.38280733985880451136705037685, −4.66702181980443557222511623626, −4.33367976419795829063401444198, −4.24806437155746553539322930066, −3.76720496821210600159941164953, −3.70308177914099961039803022630, −2.72952836326600270498315899350, −2.51328224577348842782040932230, −1.92925336763468307235691418587, −1.73985117507613662361081016545, −0.804191529473431747094285990407, −0.64922751759054705806245418579, 0.64922751759054705806245418579, 0.804191529473431747094285990407, 1.73985117507613662361081016545, 1.92925336763468307235691418587, 2.51328224577348842782040932230, 2.72952836326600270498315899350, 3.70308177914099961039803022630, 3.76720496821210600159941164953, 4.24806437155746553539322930066, 4.33367976419795829063401444198, 4.66702181980443557222511623626, 5.38280733985880451136705037685, 5.82091162209081564882910286702, 6.08669307083478761465946807948, 6.48584645820442027954098910832, 6.55858142983195531957121901233, 6.95438309295676997830431919735, 7.26759385787398314979198485766, 7.86340149941843290348118159285, 8.185989117148983439655265848516

Graph of the $Z$-function along the critical line